Skip to main content
Log in

Distribution of Resonances for Open Quantum Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze a simple model of quantum chaotic scattering system, namely the quantized open baker’s map. This model provides a numerical confirmation of the fractal Weyl law for the semiclassical density of quantum resonances. The fractal exponent is related to the dimension of the classical repeller. We also consider a variant of this model, for which the full resonance spectrum can be rigorously computed, and satisfies the fractal Weyl law. For that model, we also compute the shot noise of the conductance through the system, and obtain a value close to the prediction of random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrova, I.: Semi-Classical Wavefront Set and Fourier Integral Operators. To appear in Can. J. Math., available at http://arxiv.org/list/math.AP/0407460, 2004

  2. Balazs N.L., Voros A. (1989) The quantized baker’s transformation. Ann. Phys. (NY) 190, 1–31

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Borgonovi F., Guarneri I., Shepelyansky D.L. (1991) Statistics of quantum lifetimes in a classically chaotic system. Phys. Rev. A 43:4517–4520

    ADS  Google Scholar 

  4. Bogomolny E.B. (1992) Semiclassical quantization of multidimensional systems. Nonlinearity 5:805–866

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bouzouina A., De Bièvre S. (1996) Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105

    Article  MATH  ADS  Google Scholar 

  6. Büttiker M. (1990) Scattering theory of thermal and excess noise in open conductors. Phys. Rev. Lett. 65:2901–2904

    Article  ADS  Google Scholar 

  7. Casati G., Maspero G., Shepelyansky D.L. (1997) Relaxation process in a regime of quantum chaos. Phys. Rev. E 56:R6233–6236

    ADS  Google Scholar 

  8. Chernov N., Markarian R. (1997) Ergodic properties of Anosov maps with rectangular holes. Boletim Sociedade Brasileira Matematica 28, 271–314

    Article  MATH  MathSciNet  Google Scholar 

  9. Chirikov, B.V.: Time-dependent quantum systems. In: Chaos et physique quantique. (École d’été des Houches, Session LII, 1989), M.J. Giannoni, A. Voros, J. Zinn-Justin, eds., Amsterdam: North Holland, 1991

  10. Chirikov, B.V., Izrailev, F.M., Shepelyansky, D.L.: Dynamical stochasticity in classical and quantum mechanics. Math. Phys. Rev. 2, 209–267 (1981), Soviet Sci. Rev. Sect. 2 C, Math. Phys. Rev. 2, Harwood Academic, Chur

  11. Christianson, H.: Growth and zeros of the zeta function for hyperbolic rational maps. Preprint 2003, to appear in Can. J. Math., available at http://math.berkeley.edu/~hans

  12. Cvitanović P., Eckhardt B. (1989) Periodic-orbit quantization of chaotic systems. Phys. Rev. Lett. 63, 823–826

    Article  MathSciNet  ADS  Google Scholar 

  13. Degli Esposti M. (1993) Quantization of the orientation preserving automorphisms of the torus. Ann. Inst. Henri Poincaré 58, 323–341

    MATH  MathSciNet  Google Scholar 

  14. Dimassi M., Sjöstrand J. (1999) Spectral Asymptotics in the semi-classical limit. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  15. Doron E., Smilansky U. (1992) Semiclassical quantization of chaotic billiards: a scattering approach. Nonlinearity 5:1055–1084

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Falconer K. (1997) Techniques in fractal geometry. Newyork, J. Wiley & Sons

    MATH  Google Scholar 

  17. Fyodorov, Y.V., Sommers, H.-J.: Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38, 1918–1981 (1997); ibid: Spectra of random contractions and scattering theory for discrete-time systems. JETP Lett. 72, 422–426 (2000)

    Google Scholar 

  18. Gaspard P., Alonso D., Burghardt I. (1995) New Ways of Understanding Semiclassical Quantization. Adv. Chem. Phys. 90, 105–364

    Google Scholar 

  19. Guillemin V., Uhlmann G. (1981) Oscillatory integrals with singular symbols. Duke Math. J., 48, 251–267

    Article  MATH  MathSciNet  Google Scholar 

  20. Guillopé L., Lin K., Zworski M. (2004) The Selberg zeta function for convex co-compact Schottky groups. Comm. Math. Phys. 245, 149–176

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hannay J.H., Berry M.V. (1980) Quantization of linear maps on a torus - Fresnel diffraction by a periodic grating. Physica D 1, 267–290

    Article  MathSciNet  ADS  Google Scholar 

  22. Helffer, B., Sjöstrand, J.: Résonances en limite semi-classique. Mémoires de la S.M.F. 114(3), (1986)

  23. Hörmander L. (1983) The Analysis of Linear Partial Differential Operators. Vol. I-II. Berlin Heidelberg Newyork, Springer Verlag

    Google Scholar 

  24. Hörmander L. (1985) The Analysis of Linear Partial Differential Operators. Vol. III–IV. Berlin Heidelberg Newyork, Springer Verlag

    Google Scholar 

  25. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Verlag, 1998

  26. Jalabert R.A., Pichard J.-L., Beenakker C.W.J. (1994) Universal Quantum Signatures of Chaos in Ballistic Transport. Europhys. Lett. 27, 255–260

    Google Scholar 

  27. Karabegov A., Schlichenmaier M. (2001) Identification of Berezin-Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49–76

    MATH  MathSciNet  Google Scholar 

  28. Keller J.B. (1958) Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. Phys. 4, 180–188

    Article  MATH  ADS  Google Scholar 

  29. Lifermann J. (1979) Les méthods rapides de transformation du signal: Fourier, Walsh, Hadamard, Haar. Paris, Masson

    Google Scholar 

  30. Lin K. (2002) Numerical study of quantum resonances in chaotic scattering. J. Comp. Phys. 176, 295–329

    Article  MATH  ADS  Google Scholar 

  31. Lin K., Zworski M. (2002) Quantum resonances in chaotic scattering. Chem. Phys. Lett. 355, 201–205

    Article  Google Scholar 

  32. Lu W., Sridhar S., Zworski M. (2003) Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett. 91:154101

    Article  ADS  Google Scholar 

  33. Meenakshisundaram N., Lakshminarayan A. (2005) Multifractal eigenstates of quantum chaos and the Thue-Morse sequence. Phys. Rev. E. 71:065303(R)

    ADS  Google Scholar 

  34. Melrose R.B., Uhlmann G. (1979) Lagrangian intersection and the Cauchy problem. Comm. Pure Appl. Math. 22, 483–519

    MathSciNet  Google Scholar 

  35. Miquel C., Paz J.P., Saraceno M. (2002) Quantum computers in phase space. Phys. Rev. A 65:062309

    Article  ADS  Google Scholar 

  36. Muscalu C., Thiele C., Tao T. (2003) A Carleson-type theorem for a Cantor group model of the Scattering Transform. Nonlinearity 19, 219–246

    Article  MathSciNet  ADS  Google Scholar 

  37. Naud F. (2005) Classical and Quantum lifetimes on some non-compact Riemann surfaces. J. Phys. A 38:10721–10729

    MathSciNet  ADS  Google Scholar 

  38. Nonnenmacher, S.: Fractal Weyl law for open chaotic maps. In: Mathematical physics of quantum mechanics. Asch, J., Joye, A. (Eds.), Lect. Notes in Physics 690, Berlin: Springer, 2006

  39. Nonnenmacher, S., Rubin, M.: Resonant eigenstates in quantum chaotic scattering. http:arxiv.org/list/nlin. CD/0608069, 2006

  40. Nonnenmacher, S., Zworski, M.: Fractal Weyl laws in discrete models of chaotic scattering. J. Phys A 38, 10683–10702 (2005), invited paper in a special issue on Trends in quantum chaotic scattering

    Google Scholar 

  41. Ozorio de Almeida A.M., Vallejos R.O. (2000) Poincaré recurrence theorem and the unitarity of the S-matrix. Chaos, Solitons and Fractals 11:1015–1020

    Article  MATH  MathSciNet  Google Scholar 

  42. Patterson, S.J., Perry, P.: The divisor of Selberg’s zeta function for Kleinian groups (with an Appendix by C.L. Epstein). Duke Math. J. 106 (2001), 321–390

    Google Scholar 

  43. Prosen T. (1995) General quantum surface-of-section method. J. Phys. A 28:4133–4155

    MathSciNet  ADS  Google Scholar 

  44. Robert D. (1987) Autour de l’approximation semi-classique. Basel, Birkhäuser

    Google Scholar 

  45. Saraceno M., Vallejos R.O. (1996) The quantized D-transformation. Chaos 6, 193–199

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Saraceno M., Voros A. (1994) Towards a semiclassical theory of the quantum baker’s map. Physica D 79, 206–268

    MATH  MathSciNet  ADS  Google Scholar 

  47. Savin, D.V., Sokolov, V.: Quantum versus classical decay laws in open chaotic systems. Phys. Rev. E 56, R4911–4913 (1997) Frahm, K.: Quantum relaxation in open chaotic systems. Phys. Rev. E 56, R6237–6240 (1997)

    Google Scholar 

  48. Schack R., Caves C.M. (2000) Shifts on a finite qubit string: a class of quantum baker’s maps. Appl. Algebra Engrg. Comm. Comput. 10, 305–310

    Article  MATH  MathSciNet  Google Scholar 

  49. Schomerus H., Tworzyd J.ło (2004) Quantum-to-classical crossover of quasi-bound states in open quantum systems. Phys. Rev. Lett. 93:154102

    Article  ADS  Google Scholar 

  50. Sjöstrand J. (1990) Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60, 1–57

    Article  MATH  MathSciNet  Google Scholar 

  51. Sjöstrand J., Zworski M. (2002) Quantum monodromy and semiclassical trace formulae. J. Math. Pure Appl. 81, 1–33

    MATH  Google Scholar 

  52. Sjöstrand, J., Zworski, M.: Elementary linear algebra for advanced spectral problems. preprint 2003, http://math.berkeley.edu/~zworski/ela.ps.gz, and http://arxiv.org/list/sp/0312166, 2003

  53. Sjöstrand, J., Zworski, M.:Fractal upper bounds on the density of semiclassical resonances. preprint 2005, to appear in Duke Math. J., available at http://math.berkeley.edu/~zworski/sz10.ps.gz

  54. Strain J., Zworski M. (2004) Growth of the zeta function for a quadratic map and the dimension of the Julia set. Nonlinearity 17:1607–1622

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. Tanner G. (2000) Spectral statistics for unitary transfer matrices of binary graphs. J. Phys. A 33:3567–3585

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Tracy M.M., Scott A.J. (2002) The classical limit for a class of quantum baker’s maps. J. Phys. A 35:8341–8360

    MathSciNet  ADS  Google Scholar 

  57. Tworzydło, J., Tajic, A., Schomerus, H., Beenakker, C.W.: Dynamical model for the quantum-to-classical crossover of shot noise. Phys. Rev. B 68 (2003), 115313; Ph. Jacquod, Sukhorukov, E.V.: Breakdown of universality in quantum chaotic transport: the two-phase dynamical fluid model. Phys. Rev. Lett. 92, 116801 (2004)

    Google Scholar 

  58. Wirzba A. (1999) Quantum Mechanics and Semiclassics of Hyperbolic n-Disk Scattering Systems. Phys. Rep. 309, 1–116

    Article  MathSciNet  ADS  Google Scholar 

  59. Zworski M. (1999) Dimension of the limit set and the density of resonances for convex co-compact Riemann surfaces. Inv. Math. 136, 353–409

    Article  MATH  MathSciNet  Google Scholar 

  60. Życzkowski K., Sommers H.-J. (2000) Truncations of random unitary matrices. J.Phys. A 33:2045–2057

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Zworski.

Additional information

Communicated by P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmacher, S., Zworski, M. Distribution of Resonances for Open Quantum Maps. Commun. Math. Phys. 269, 311–365 (2007). https://doi.org/10.1007/s00220-006-0131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0131-0

Keywords

Navigation