Abstract
The time evolution of the distribution function for the charged particles in a dilute gas is governed by the Vlasov–Poisson–Boltzmann system when the force is self-induced and its potential function satisfies the Poisson equation. In this paper, we give a satisfactory global existence theory of classical solutions to this system when the initial data is a small perturbation of a global Maxwellian. Moreover, the convergence rate in time to the global Maxwellian is also obtained through the energy method. The proof is based on the theory of compressible Navier–Stokes equations with forcing and the decomposition of the solutions to the Boltzmann equation with respect to the local Maxwellian introduced in [23] and elaborated in [31].
Similar content being viewed by others
References
Boltzmann L. (1964) (translated by Stephen G. Brush): Lectures on Gas Theory. New York, Dover Publications Inc
Carleman T. (1932) Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 91–142
Cercignani C. (1988) The Boltzmann equation and its applications Applied Mathematical Sciences 67. New York, Springer-Verlag
Cercignani C., Illner R., Pulvirenti M. (1994) The Mathematical Theory of Dilute Gases Applied Mathematical Sciences 106. New York, Springer-Verlag
Deckelnick K. (1992) Decay estimates for the compressible Navier–Stokes equations in unbounded domains. Math. Z. 209, 115–130
Desvillettes L., Dolbeault J. (1991) On long time asymptotics of the Vlasov–Poisson–Boltzmann equation. Comm. Partial Differ. Eqs. 16 (2–3): 451–489
Duan R., Yang T., Zhu C.-J. (2005) Boltzmann equation with external force in infinite vacuum. J. Math. Phys. 46(5): 053307
Glassey R.: The Cauchy Problem in Kinetic Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1996
Glassey R., Strauss W.-A. (1999) Decay of the linearized Boltzmann–Vlasov system. Transport Theory Statist. Phys. 28(2): 135–156
Glassey R., Strauss W.-A. (1999) Perturbation of essential spectra of evolution operators and the Vlasov–Poisson–Boltzmann system. Discrete Contin. Dynam. Systems 5(3): 457–472
Glassey R., Schaeffer J., Zheng Y.-X. (1996) Steady states of the Vlasov–Poisson–Fokker–Planck system. J. Math. Anal. Appl. 202(3): 1058–1075
Golse F., Perthame B., Sulem C. (1986) On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Rational Mech. Anal. 103, 81–96
Grad H.: Asymptotic Theory of the Boltzmann Equation II, Rarefied Gas Dynamics. J. A. Laurmann, ed., Vol. 1, New York: Academic Press 1963, pp. 26–59
Guo Y. (2002) The Vlasov–Poisson–Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9): 1104–1135
Guo Y. (2003) The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3): 593–630
Guo Y. (2001) The Vlasov–Poisson–Boltzmann system near vacuum. Commun. Math. Phys. 218(2): 293–313
Guo Y. (2004) The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4): 1081–1094
Hilbert D., (1953) Grundzuge einer Allgemeinen Theorie der Linearen Integralgleichungen (in German). New York N.-Y, Chelsea Publishing Company
Huang F.-M., Xin Z.-P., Yang T.: Contact discontinuity with general perturbations for gas motions. Preprint 2004, available at http://www.cityu.edu.hk/rcms/publication/preprint18.pdf
Kawashima S., Matsumura A. (1985) Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101(1): 97–127
Li H.-L., Matsumura A.: Asymptotic behavior of compressible Navier–Stokes–Poisson system. Preprint
Lions P.-L.: On kinetic equations. In: Proceedings of the International Congress of Mathematicians, Kyoto: Math. Soc. Japan, 1991, pp.1173–1185
Liu T.-P., Yang T., Yu S.-H. (2004) Energy method for the Boltzmann equation. Physica D 188(3-4): 178–192
Liu T.-P., Yang T., Yu S.-H., Zhao H.-J. (2006) Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Rational Mech. Anal. 181(2): 333–371
Liu T.-P., Yu S.-H. (2004) Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246(1): 133–179
Matsumura A., Nishida T. (1983) Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89(4): 445–464
Mischler S. (2000) On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 210(2): 447–466
Ukai S., Yang T., Zhao H.-J. (2005) Global solutions to the Boltzmann equation with external forces. Analysis and Applications 3(2): 157–193
Ukai S., Yang T., Zhao H.-J. (2006) Convergence rate to stationary solutions for Boltzmann equation with external force. To appear in Chin. Ann. Math. Ser. B. 27(4): 363–378
Yang T., Yu H.-J., Zhao H.-J.: Cauchy problem for the Vlasov–Poisson–Boltzmann system. Arch. Rational Mech. Anal. 182(3), (2006)
Yang T., Zhao H.-J. (2006) A new energy method for the Boltzmann equation. J. Math. Phys. 47(5): 053301
Yang T., Zhao H.-J. (2005) A half-space problem for the Boltzmann equation with specular reflection boundary condition. Commun. Math. Phys. 255(3): 683–726
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H.-T. Yau.
Rights and permissions
About this article
Cite this article
Yang, T., Zhao, H. Global Existence of Classical Solutions to the Vlasov-Poisson-Boltzmann System. Commun. Math. Phys. 268, 569–605 (2006). https://doi.org/10.1007/s00220-006-0103-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-006-0103-4