Skip to main content
Log in

All Inequalities for the Relative Entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party states to a smaller number m of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy.

Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by quantum relative entropies. In doing so we make a connection to secret sharing schemes with general access structures: indeed, it turns out that the extremal rays of the cone defined by monotonicity are populated by classical secret sharing schemes.

A surprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benaloh, J., Leichter, J.: Generalising Secret Sharing and Monotone Functions. Advances in Cryptology, CRYPTO 1998, LNCS 403, Berlin: Springer Verlag, 1990, pp. 27–35

  2. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K. (1996).Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851

    Article  MathSciNet  ADS  Google Scholar 

  3. Cerf N.J., Adami C. (1997) Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194–5197

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Christandl M., Winter A. (2004) Squashed entanglement – An additive entanglement measure. J. Math. Phys. 45(3): 829–840

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Cover T.M., Thomas J.A. (1991) Elements of Information Theory. New York, Wiley & Sons

    MATH  Google Scholar 

  6. Grünbaum, B.: Convex Polytopes. 2nd ed. prepared by V. Kaibel, V. Klee, G. Ziegler, Graduate Texts in Mathematics 221, Berlin: Springer Verlag, 2003

  7. Holevo A.S. (1973).Bounds for the quantity of information transmitted by a quantum channel. Probl. Inform. Transm. 9(3): 177–183

    Google Scholar 

  8. Ito, M., Saito, A., Nishizeki, T.: Secret Sharing Schemes releasing General Access Structure. In: Proc. IEEE Globecom ’87, Berlin-Heidelberg-New York: Springer, 1987, pp. 99–102

  9. Lieb E.H., Ruskai M.B. (1973). Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941

    Article  MathSciNet  Google Scholar 

  10. Lindblad G. (1974). Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2): 111–119

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)

    Google Scholar 

  12. Linden, N., Maneva, E., Massar, S., Popescu, S., Roberts, D., Schumacher, B., Smolin, J.A., Thapliyal, A.V.: In preparation

  13. Linden N., Winter A. (2005). A new inequality for the von Neumann entropy. Commun. Math. Phys. 259, 129–138

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Nielsen M.A., Chuang I.L. (2000) Quantum Computation and Quantum Information. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  15. Petz D. (2003). Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(1): 79–91

    Article  MATH  MathSciNet  Google Scholar 

  16. Pippenger N. (2003). The inequalities of quantum information theory. IEEE Trans. Inf. Theory 49(4): 773–789

    Article  MATH  MathSciNet  Google Scholar 

  17. Shamir A. (1979).How to Share a Secret. Commun. ACM 22(11), 612–613

    MATH  MathSciNet  Google Scholar 

  18. Stinson D.R. (1992) An explication of secret sharing schemes. Designs, Codes and Cryptography 2(4): 357–390

    Article  MATH  MathSciNet  Google Scholar 

  19. Uhlmann A. (1977) Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Vedral V. (2002) The role of relative entropy in quantum information Theory. Rev. Mod. Phys. 74(1):197–234

    Article  MathSciNet  ADS  Google Scholar 

  21. Vedral V., Plenio M.B. (1998) Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633

    Article  ADS  Google Scholar 

  22. Vedral V., Plenio M.B., Rippin M.A., Knight P.L. (1996) Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279

    Article  MathSciNet  ADS  Google Scholar 

  23. Yeung R.W. (1997) A Framework for linear information inequalities. IEEE Trans. Inf. Theory 43(6): 1924–1934

    Article  MATH  MathSciNet  Google Scholar 

  24. Yuen H.P., Ozawa M. (1993). Ultimate information carrying limit of quantum systems. Phys. Rev. Lett. 70(4): 363–366

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Zhang Z., Yeung R.W. (1998) On characterization of entropy function via information inequalities. IEEE Trans. on Inform. Theory 44(4): 1440–1452

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibinson, B., Linden, N. & Winter, A. All Inequalities for the Relative Entropy. Commun. Math. Phys. 269, 223–238 (2007). https://doi.org/10.1007/s00220-006-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0081-6

Keywords

Navigation