Skip to main content
Log in

The Equations of Magnetohydrodynamics: On the Interaction Between Matter and Radiation in the Evolution of Gaseous Stars

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove existence of global-in-time weak solutions to the equations of magnetohydrodynamics, specifically, the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behaviour of the magnetic field. The result applies to any finite energy data posed on a bounded spatial domain in R 3, supplemented with conservative boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M. A version of the fundamental theorem for Young measures. In Lect. Notes in Physics 344, Berlin-Heidelberg-New York: Springer-Verlag, 1989, pp. 207–215

  2. Becker E. (1966) Gasdynamik. Teubner-Verlag, Stuttgart

    Google Scholar 

  3. Besse C., Claudel J., Degond P., Deluzet F., Gallice G., Tesserias C. (2004) A model hierarchy for ionospheric plasma modeling. Math. Models Meth. Appl. Sci. 14, 393–415

    Article  MATH  Google Scholar 

  4. Bogovskii M.E. (1980) Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1): 5–40

    MathSciNet  Google Scholar 

  5. Buet C., Després B. (2004) Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spect. and Rad. Trans. 85(3–4): 385–418

    Article  ADS  Google Scholar 

  6. Chapman S., Cowling T.G. (1990) Mathematical theory of non-uniform gases. Cambridge Univ. Press, Cambridge

    Google Scholar 

  7. Coifman R., Meyer Y. (1975) On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212, 315–331

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox J.P., Giuli R.T. (1968) Principles of stellar structure I.,II. Gordon and Breach, New York

    Google Scholar 

  9. Davidson P.A. (2004) Turbulence:An introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  10. Degond P., Lemou M. (2001) On the viscosity and thermal conduction of fluids with multivalued internal energy. Euro. J. Mech. B- Fluids 20, 303–327

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. DiPerna R.J., Lions P.-L. (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Duchon J., Robert R. (2000) Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ducomet B., Feireisl E. (2004) On the dynamics of gaseous stars. Arch. Rational Mech. Anal. 174, 221–266

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Duvaut G., Lions J.-L. (1976) Inequalities in mechnics and physics. Springer-Verlag, Heidelberg

    Google Scholar 

  15. Eliezer S., Ghatak A., Hora H. (1986) An introduction to equations of states, theory and applications. Cambridge University Press, Cambridge

    Google Scholar 

  16. Eyink G.L. (2003) Local 4/5 law and energy dissipation anomaly in turbulence. Nonlinearity 16, 137–145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Feireisl E. (2001) On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42(1): 83–98

    MathSciNet  MATH  Google Scholar 

  18. Feireisl E. (2003) Dynamics of viscous compressible fluids. Oxford University Press, Oxford

    Google Scholar 

  19. Feireisl E. (2004) On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740

    Article  MathSciNet  Google Scholar 

  20. Feireisl E. (2006) Stability of flows of real monoatomic gases. Commun. Partial Differ. Eqs. 31, 325–348

    Article  MathSciNet  MATH  Google Scholar 

  21. Feireisl E., Petzeltová H. (2000) On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differ. Eqs. 25(3–4): 755–767

    Article  MATH  Google Scholar 

  22. Galdi G.P. (1994) An introduction to the mathematical theory of the Navier-Stokes equations, I. Springer-Verlag, New York

    Google Scholar 

  23. Gallavotti G. (1999) Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg

    MATH  Google Scholar 

  24. Giovangigli, V. Multicomponent flow modeling. Basel: Birkhäuser, 1999

  25. Hoff D., Jenssen H.K. (2004) Symmetric nonbarotropic flows with large data and forces. Arch. Rational Mech. Anal. 173, 297–343

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jeffrey A.N., Taniuti T. (1964) Non-linear wave propagation. Academic Press, New York

    MATH  Google Scholar 

  27. Lions P.-L. (1998) Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford

    Google Scholar 

  28. Lions P.-L. (1999) Bornes sur la densité pour les équations de Navier- Stokes compressible isentropiques avec conditions aux limites de Dirichlet. C.R. Acad. Sci. Paris, Sér I. 328, 659–662

    MATH  ADS  Google Scholar 

  29. Mihalas B., Weibel-Mihalas B. (1984) Foundations of radiation hydrodynamics. Dover Publications, Dover

    MATH  Google Scholar 

  30. Müller, I., Ruggeri, T. Rational extended thermodynamics. Springer Tracts in Natural Philosophy 37, Heidelberg: Springer-Verlag, 1998

  31. Novotný A., Straškraba I. (2004) Introduction to the theory of compressible flow. Oxford University Press, Oxford

    MATH  Google Scholar 

  32. Pedregal P. (1997) Parametrized measures and variational principles. Birkhäuser, Basel

    MATH  Google Scholar 

  33. Rajagopal K.R., Srinivasa A.R. (2004) On thermodynamical restrictions of continua. Proc. Royal Soc. London A 460, 631–651

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ruggeri T., Trovato M. (2004) Hyperbolicity in extended thermodynamics of  Fermi and Bose gases. Continuum Mech. Thermodyn. 16(6): 551–576

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Serre D. (1991) Variation de grande amplitude pour la densité d’un fluid viscueux compressible. Physica D 48, 113–128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shore S.N. (1992) An introduction to atrophysical hydrodynamics. Academic Press, New York

    Google Scholar 

  37. Tartar, L. Compensated compactness and applications to partial differential equations. Nonlinear Anal. and Mech., Heriot-Watt Sympos., L.J. Knopps editor, Research Notes in Math. 39, Boston: Pitman, 1975, pp. 136–211

  38. Temam, R. Navier-Stokes equations. Amsterdam: North-Holland, 1977

  39. Vaigant V.A., Kazhikhov A.V. (1995) On the existence of global solutions to two-dimensional Navier-Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z. 36(6): 1283–1316

    MathSciNet  Google Scholar 

  40. Zahn J.P., Zinn-Justin J. (1993) Astrophysical fluid dynamics, Les Houches, XLVII. Elsevier, Amsterdam

    Google Scholar 

  41. Zirin H. (1988) Astrophysics of the sun. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by P. Constantin

The work supported by Grant A1019302 of GA AV CR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducomet, B., Feireisl, E. The Equations of Magnetohydrodynamics: On the Interaction Between Matter and Radiation in the Evolution of Gaseous Stars. Commun. Math. Phys. 266, 595–629 (2006). https://doi.org/10.1007/s00220-006-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0052-y

Keywords

Navigation