Skip to main content
Log in

Continuum Limit of the Volterra Model, Separation of Variables and Non-Standard Realizations of the Virasoro Poisson Bracket

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The classical Volterra model, equipped with the Faddeev-Takhtajan Poisson bracket provides a lattice version of the Virasoro algebra. The Volterra model being integrable, we can express the dynamical variables in terms of the so-called separated variables. Taking the continuum limit of these formulae, we obtain the Virasoro generators written as determinants of infinite matrices, the elements of which are constructed with a set of points lying on an infinite genus Riemann surface. The coordinates of these points are separated variables for an infinite set of Poisson commuting quantities including L 0. The scaling limit of the eigenvector can also be calculated explicitly, so that the associated Schroedinger equation is in fact exactly solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gervais J.L. (1985). Transport matrices associated with the Virasoro algebra. Phys. Lett. B160:279

    ADS  MathSciNet  Google Scholar 

  2. Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz. Commun. Math. Phys. 177, 381–398 (1996) Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997) Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation. Commun. Math. Phys. 200, 297–324 (1999)

    Google Scholar 

  3. Sklyanin, E.K.: The quantum Toda chain. Lect. Notes in Phys. 226, Berlin-Heidelberg-New York: Springer, 1985, pp. 196–233; Separation of variables. Prog. Theor. Phys. (suppl.) 185, 35 (1995)

  4. Kac, M., van Moerbeke, P.: Some probabilistic aspect of scattering theory. Proceedings of the Conference on functional integration and its applications, (Cumberland Lodge London, 1974) Oxford:Clarendon Press, 1975, pp. 87–96 On some periodic Toda lattices, Proc. Nat. Acad. Sci., USA 72 (4), 1627–1629 (1975); A complete solution of the periodic Toda problem. Proc. Nat. Acad. Sci., USA, 72 (8), 2879–2880 (1975)

    Google Scholar 

  5. van Moerbeke P. (1976). The spectrum of Jacobi matrices. Invent. Math. 37:45–81

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable Systems I. Encyclopedia of Mathematical Sciences, Dynamical systems IV. Berlin-Heidelberg-New York: Springer, 1990, p. 173–281

  7. Faddeev L.D., Takhtajan L. (1986). Liouville model on the lattice. Springer Lectures Notes in Physics, 246, Springer, Berlin-Heidelberg-New York, p. 66

    Google Scholar 

  8. Volkov, A.: A Hamiltonian interpretation of the Volterra model. Zapiski.Nauch.Semin. LOMI 150,17 (1986); Liouville theory and sh-Gordon model on the lattice. Zapiski.Nauch.Semin. LOMI 151,24 (1987); Miura transformation on the lattice. Theor. Math. Phys. 74 96 (1988)

    Google Scholar 

  9. Babelon O. (1990). Exchange formula and lattice deformation of the Virasoro algebra. Physics Letters 238B:234

    ADS  MathSciNet  Google Scholar 

  10. Volkov, A. Yu.: Quantum Volterra Model. Phys. Lett. A167, 345 (1992); Noncommutative Hypergeometry. http://arxiv.org/list/ math.QA/0312084, 2003

  11. Faddeev, L.D., Volkov, A. Yu.: Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B315, 311318 (1993)

    Google Scholar 

  12. Faddeev L., Volkov A.Yu. (2004). Shift Operator for Nonabelian Lattice Current Algebra. Publ. Res. Inst. Math. Sci. Kyoto 40:1113–1125

    Article  MATH  MathSciNet  Google Scholar 

  13. Faddeev L.D., Kashaev R.M., Volkov A.Yu. (2001). Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality. Commun. Math. Phys. 219:199–219

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Gervais, J.L., Neveu, A.: Novel triangle relation and absence of tachyon in Liouville string field theory. Nucl. Phys. B238, 125 (1984); Oscillator representations of the two-dimensional conformal algebra. Commun. Math. Phys. 100, 15,(1985)

    Google Scholar 

  15. Babelon O., Bernard D., Talon M. (2003). Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Atkinson, F.V.: Multiparameter spectral theory. Bull. Amer. Math. Soc. 74,1–27 (1968); Multiparameter Eigenvalue Problems. New York: Academic, 1972

    Google Scholar 

  17. Enriquez, B., Rubtsov, V.: Commuting families in skew fields and quantization of Beauville’s fibration. http://arxiv.org/list/ math.AG/0112276,2001

  18. Babelon O., Talon M. (2003). Riemann surfaces, separation of variables and classical and quantum integrability. Phys. Lett. A 312:71–77

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Babelon O. (2004). On the Quantum Inverse Problem for the Closed Toda Chain. J. Phys A. Math. Gen. 37:303–316

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Novikov, S.P.: The periodic problem for the Korteweg-de Vries equation. Funkt. Anal. i Ego Pril. 8, 54–66 (1974) Translation in Funct. Anal. Jan.1975, pp. 236–246.

  21. Dubrovin B., Novikov S.P. (1974). Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation. Dokl. Akad. Nauk. USSR 6:2131–2144

    MathSciNet  Google Scholar 

  22. Its, A., Matveev, V.: On Hill operators with finitely many lacunae. Funkt. Anal. i ego Pril. 9 (1975)

  23. McKean H.P., van Moerbeke P. (1975). The Spectrum of Hill’s Equation.Invent. Math. 30:217–274

    MATH  Google Scholar 

  24. Matveev V.B., Salle M.A. (1990). Darboux Transformations and Solitons. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  25. Adler M. (1979). On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de-Vries equations. Invent. Math. 50:219

    Article  MATH  ADS  Google Scholar 

  26. Smirnov, F.A.: Quasi-classical Study of Form Factors in Finite Volume. http://arxiv.org/list/ hep-th/9802132, 1998; Dual Baxter equations and quantization of Affine Jacobian. http://arxiv.org/list/ math-ph/0001032, 2000

  27. Faddeev, L.D.: Discrete Heisenberg-Weyl Group and Modular Group. Lett. Math. Phys. 34, 249–254 (1995); Modular Double of Quantum Group. http://arxiv.org/list/math.QA/9912078, 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Babelon.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babelon, O. Continuum Limit of the Volterra Model, Separation of Variables and Non-Standard Realizations of the Virasoro Poisson Bracket. Commun. Math. Phys. 266, 819–862 (2006). https://doi.org/10.1007/s00220-006-0045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0045-x

Keywords

Navigation