Skip to main content

Geometric Quantization, Parallel Transport and the Fourier Transform


In quantum mechanics, the momentum space and position space wave functions are related by the Fourier transform. We investigate how the Fourier transform arises in the context of geometric quantization. We consider a Hilbert space bundle \(\mathcal{H}\) over the space \(\mathcal{J}\) of compatible complex structures on a symplectic vector space. This bundle is equipped with a projectively flat connection. We show that parallel transport along a geodesic in the bundle \(\mathcal{H} \to \mathcal{J}\) is a rescaled orthogonal projection or Bogoliubov transformation. We then construct the kernel for the integral parallel transport operator. Finally, by extending geodesics to the boundary (for which the metaplectic correction is essential), we obtain the Segal-Bargmann and Fourier transforms as parallel transport in suitable limits.

This is a preview of subscription content, access via your institution.


  1. Axelrod S., Della Pietra S., Witten E. (1991). Geometric quantization of Chern-Simons gauge theory. J. Diff. Geom. 33:787–902

    MATH  MathSciNet  Google Scholar 

  2. Bargmann V.(1961). On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 14:187–214

    Article  MATH  MathSciNet  Google Scholar 

  3. Folland G.B. (1984). Real analysis Modern techniques and their applications. John Wiley & Sons, New York

    MATH  Google Scholar 

  4. Florentino C., Matias P., Mourao J., Nunes J.P. (2005). Geometric quantization, complex structures and the coherent state transform. J. Funct. Anal. 221:303–322

    Article  MATH  MathSciNet  Google Scholar 

  5. Ginzburg, V.L., Montgomery, R.: Geometric quantization and no-go theorems. In: Grabowski, J., Urbański, P. (eds.) Poisson geometry, Warsaw, 1998, Banach Center Publ. 51, Warsaw: Polish Acad. Sci., 2000, 69–77

  6. Hall B.C. (2002). Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type. Commun. Math. Phys. 226:233–268

    Article  MATH  ADS  Google Scholar 

  7. Lion, G., Vergne, M.: The Weil representation, Maslov index and theta series. Prog. in Math. 6, Birkhäuser Boston, MA 1980, Part I

  8. Magneron B. (1984). Spineurs symplectiques purs et indice de Maslov de plan Lagrangiens positifs. J. Funct. Anal. 59:90–122

    Article  MATH  MathSciNet  Google Scholar 

  9. Robinson, P.L., Rawnsley, J.H.: The metaplectic representation, Mpc structures and geometric quantization. Mem. Amer. Math. Soc. Vol. 81, No. 410, Providence, RI: Amer. Math. Soc., 1989

  10. Satake, I.: On unitary representations of a certain group extension (in Japanese). Sugaku 21, 241–253 (1969); Fock representations and theta-functions. In: Ahlfors, L.V. et al. (eds.) Advances in the theory of Riemann surfaces. Princeton, NJ: Princeton Univ. Press, 1971, pp. 393–405

  11. Siegel C.L. (1943). Symplectic geometry. Amer. J. Math. 65:1–86

    Article  MathSciNet  Google Scholar 

  12. Stein E.M., Weiss G. (1971). Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, Princeton, NJ

    MATH  Google Scholar 

  13. Taylor M.E. (1996). Partial differential equations I. Basic theory. Springer-Verlag, New York

    Google Scholar 

  14. Woodhouse N.M.J. (1981). Geometric quantization and the Bogoliubov transformation. Proc. Royal Soc. London A 378:119–139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Woodhouse N.M.J. (1992). Geometric Quantization (2nd ed). Oxford Univ. Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Communicated by A. Connes

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirwin, W.D., Wu, S. Geometric Quantization, Parallel Transport and the Fourier Transform. Commun. Math. Phys. 266, 577–594 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Hilbert Space
  • Parallel Transport
  • Bergman Kernel
  • Geometric Quantization
  • Bogoliubov Transformation