Skip to main content
Log in

Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology \(\mathbb{R} \times S_g\), where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achucarro A., Townsend P. (1986). A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180:85–100

    ADS  MathSciNet  Google Scholar 

  2. Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988), Nucl. Phys. B 339, 516–32 (1988)

    Google Scholar 

  3. Nelson J.E., Regge T. (1989). Homotopy groups and (2+1)-dimensional quantum gravity. Nucl. Phys. B 328:190–202

    Article  ADS  MathSciNet  Google Scholar 

  4. Nelson J.E., Regge T. (1991). (2+1) Gravity for genus >1. Commun .Math. Phys. 141:211–23

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Nelson J.E., Regge T. (1992). (2+1) Gravity for higher genus. Class Quant Grav. 9:187–96

    Article  ADS  MathSciNet  Google Scholar 

  6. Nelson J.E., Regge T. (1992). The mapping class group for genus 2. Int. J. Mod. Phys. B6:1847–1856

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Nelson J.E., Regge T. (1993). Invariants of 2+1 quantum gravity. Commun. Math. Phys. 155:561–568

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Martin S.P. (1989). Observables in 2+1 dimensional gravity. Nucl. Phys. B 327:178–204

    Article  ADS  Google Scholar 

  9. Ashtekar A., Husain V., Rovelli C., Samuel J., Smolin L. (1989). (2+1) quantum gravity as a toy model for the (3+1) theory. Class. Quant. Grav. 6:L185–L193

    Article  ADS  MathSciNet  Google Scholar 

  10. Carlip S. (1998). Quantum gravity in 2+1 dimensions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Mess, G.: Lorentz spacetimes of constant curvature. preprint IHES/M/90/28, Avril 1990

  12. Benedetti R., Guadgnini E. (2001). Cosmological time in (2+1)-gravity. Nucl. Phys. B 613:330–352

    Article  MATH  ADS  Google Scholar 

  13. Benedetti, R., Bonsante, F.: Wick rotations in 3D gravity: \(\mathcal{ML}(\mathbb{H}^{2})\) spacetimes. http://arxiv.org/list/ math.DG/0412470, 2004

  14. Meusburger C., Schroers B.J. (2003). Poisson structure and symmetry in the Chern-Simons formulation of (2+1)-dimensional gravity. Class. Quant. Grav.20:2193–2234

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Meusburger C., Schroers B.J. (2004). The quantisation of Poisson structures arising in Chern-Simons theory with gauge group \(G \ltimes \mathfrak{g}^*\). Adv. Theor. Math. Phys. 7:1003–1043

    MATH  MathSciNet  Google Scholar 

  16. Meusburger C., Schroers B.J. (2005). Mapping class group actions in Chern-Simons theory with gauge group \(G\ltimes \mathfrak{g}^*\). Nucl. Phys. B 706:569-597

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Grigore D.R. (1996). The projective unitary irreducible representations of the Poincaré group in 1+2 dimensions. J. Math. Phys. 37:460–473

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Mund J., Schrader R. (1995). Hilbert spaces for Nonrelativistic and Relativistic "Free" Plektons (Particles with Braid Group Statistics). In: Albeverio S., Figari R., Orlandi E., Teta A. (eds.) Proceeding of the Conference "Advances in Dynamical Systems and Quantum Physics", Capri, Italy, 19-22 May, 1993. World Scientific, Singapore

    Google Scholar 

  19. Benedetti R., Petronio C. (1992). Lectures on Hyperbolic Geometry. Springer Verlag, Berlin-Heidelberg

    MATH  Google Scholar 

  20. Katok S. (1992). Fuchsian Groups. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  21. Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Diff. Geom. 25:297–326

    MATH  Google Scholar 

  22. Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta. Math. 135:1–55

    Article  MATH  MathSciNet  Google Scholar 

  23. Maskit B. (1969). On a class of Kleinian groups. Ann. Acad. Sci. Fenn. Ser. A 442:1–8

    MathSciNet  Google Scholar 

  24. Thurston,W.P.: Geometry and Topology of Three-Manifolds. Lecture notes, Princeton University, (1979).

  25. Thurston W.P. (1987) Earthquakes in two-dimensional hyperbolic geometry. In: Epstein D.B. (ed) Low dimensional topology and Kleinian groups. Cambridge University Press, Cambridge, pp. 91–112

    Google Scholar 

  26. McMullen C. (1998). Complex Earthquakes and Teichmüller theory. J. Amer. Math. Soc. 11:283–320

    Article  MATH  MathSciNet  Google Scholar 

  27. Sharpe R.W. (1996). Differential Geometry. Springer Verlag, New York

    Google Scholar 

  28. Matschull H.-J. (1999). On the relation between (2+1) Einstein gravity and Chern-Simons Theory. Class. Quant. Grav. 16:2599–609

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Alekseev A.Y., Malkin A.Z. (1995). Symplectic structure of the moduli space of flat connections on a Riemann surface. Commun. Math. Phys. 169:99–119

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Fock V.V., Rosly A.A. (1999). Poisson structures on moduli of flat connections on Riemann surfaces and r-matrices. Am. Math. Soc. Transl. 191:67–86

    MathSciNet  Google Scholar 

  31. Alekseev A.Y., Grosse H., Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory. Commun. Math. Phys. 172:317–58

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Alekseev A.Y., Grosse H., Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory II. Commun. Math. Phys. 174:561–604

    Article  ADS  MathSciNet  Google Scholar 

  33. Buffenoir E., Roche P. (1999). Harmonic analysis on the quantum Lorentz group. Commun. Math. Phys. 207:499-555

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Buffenoir E., Noui K., Roche P. (2002). Hamiltonian Quantization of Chern-Simons theory with \(SL(2,\mathbb{C})\) Group. Class. Quant. Grav. 19:4953-5016

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meusburger.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meusburger, C. Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant. Commun. Math. Phys. 266, 735–775 (2006). https://doi.org/10.1007/s00220-006-0037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0037-x

Keywords

Navigation