Communications in Mathematical Physics

, Volume 267, Issue 1, pp 141–157 | Cite as

Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space

  • Hideyuki MiuraEmail author


The critical and super-critical dissipative quasi-geostrophic equations are investigated in \(\mathbb{R}^2\). We prove local existence of a unique regular solution for arbitrary initial data in H 2-2α which corresponds to the scaling invariant space of the equation. We also consider the behavior of the solution near t = 0 in the Sobolev space.


Sobolev Space Local Existence Invariant Space Cancellation Property Large Initial Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bony J.-M. (1981) Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246zbMATHMathSciNetGoogle Scholar
  2. 2.
    Chae D., Lee J. (2003) Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311zbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Chemin Y. (1999) Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J. Anal. Math. 77, 27–50zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Constantin P., Cordoba D., Wu J. (2001) On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107zbMATHMathSciNetGoogle Scholar
  5. 5.
    Constantin P., Wu J. (1999) Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cordoba A., Cordoba D. (2004) A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Danchin R. (2001) Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differ. Eq. 26, 1183–1233zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fujita H., Kato T. (1964) On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Anal. 16, 269–315zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ju N. (2004) Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Ju N. (2005) On the two dimensional quasi-geostrophic equations. Indiana Univ. Math. J. 54, 897–926zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koch H., Tataru D. (2001) Well-posedness for the Navier-Stokes equations. Adv. Math. 157, 22–35zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kozono H., Yamazaki M. (1994) Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differ. Eq. 19, 959–1014zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Runst, T., Sickel, W. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications 3, Berlin: Walter de Gruyter & Co., 1996Google Scholar
  14. 14.
    Temam R (2001) Navier-Stokes equations. Theory and numerical analysis. AMS Chelsea Publishing, Providence, RIGoogle Scholar
  15. 15.
    Wu J. (2001) Dissipative quasi-geostrophic equations with L p data. Electron. J. Differ. Eq. 56, 1–13Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations