Communications in Mathematical Physics

, Volume 267, Issue 1, pp 159–180 | Cite as

Spectral Theory of the Klein–Gordon Equation in Pontryagin Spaces

  • Heinz LangerEmail author
  • Branko Najman
  • Christiane Tretter


In this paper we investigate an abstract Klein–Gordon equation by means of indefinite inner product methods. We show that, under certain assumptions on the potential which are more general than in previous works, the corresponding linear operator A is self-adjoint in the Pontryagin space \(\mathcal{K}\) induced by the so-called energy inner product. The operator A possesses a spectral function with critical points, the essential spectrum of A is real with a gap around 0, and the non-real spectrum consists of at most finitely many pairs of complex conjugate eigenvalues of finite algebraic multiplicity; the number of these pairs is related to the ‘size’ of the potential. Moreover, A generates a group of bounded unitary operators in the Pontryagin space \(\mathcal{K}\). Finally, the conditions on the potential required in the paper are illustrated for the Klein–Gordon equation in \(\mathbb{R}^n\); they include potentials consisting of a Coulomb part and an L p -part with np < ∞.


Hilbert Space Spectral Function Essential Spectrum Gordon Equation Negative Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AI89.
    Azizov, T.Y., Iokhvidov, I.S.: Linear operators in spaces with an indefinite metric. In: Pure and Applied Mathematics (New York). Chichester: John Wiley & Sons Ltd., 1989; Translated from the Russian by E. R. Dawson, A Wiley-Interscience PublicationGoogle Scholar
  2. Bac04.
    Bachelot A. (2004). Superradiance and scattering of the charged Klein–Gordon field by a step-like electrostatic potential. J. Math. Pures Appl. (9) 83(10):1179–1239MathSciNetzbMATHGoogle Scholar
  3. BK79.
    Brézis H., Kato T. (1979). Remarks on the Schrödinger operator with singular complex potentials. J.Math. Pures Appl. (9) 58(2):137–151MathSciNetzbMATHGoogle Scholar
  4. Bog74.
    Bognár J. (1974). Indefinite inner product spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78, Springer-Verlag, New YorkzbMATHGoogle Scholar
  5. Eck76.
    Eckardt K.-J. (1976). On the existence of wave operators for the Klein–Gordon equation. Manuscripta Math. 18(1):43–55CrossRefMathSciNetzbMATHGoogle Scholar
  6. Eck80.
    Eckardt K.-J. (1980). Scattering theory for the Klein–Gordon equation. Funct. Approx. Comment. Math. 8:13–42MathSciNetzbMATHGoogle Scholar
  7. EE87.
    Edmunds D.E., Evans W.D. (1987). Spectral theory and differential operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New YorkzbMATHGoogle Scholar
  8. GGK87.
    Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators. Vol. I, Volume 49 of Oper. Theory Adv. Appl., Basel: Birkhäuser Verlag, 1990Google Scholar
  9. HIP88.
    Hardy G.H., Littlewood J.E., Pólya G. (1988). Inequalities. Cambridge Mathematical Library. (Reprint of the 1952 edition). Cambridge: Cambridge University PressGoogle Scholar
  10. HMO1.
    Hardt, V., Mennicken, R.: On the spectrum of unbounded off-diagonal 2×2 operator matrices in Banach spaces. In: Recent advances in operator theory (Groningen, 1998), Volume 124 of Oper. Theory Adv. Appl., Basel: Birkhäuser, 2001, pp. 243–266Google Scholar
  11. Jon79.
    Jonas, P.: On local wave operators for definitizable operators in Krein space and on a paper by T. Kako. Preprint P-46/79 Zentralinstitut für Mathematik und Mechanik der AdW DDR, Berlin, 1979Google Scholar
  12. Kak76.
    Kako T. (1976). Spectral and scattering theory for the J-selfadjoint operators associated with the perturbed Klein–Gordon type equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(1):199–221MathSciNetzbMATHGoogle Scholar
  13. Kak66.
    Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. New York: Springer-Verlag, 1966Google Scholar
  14. Kat82.
    Kato T. (1982). A short introduction to perturbation theory for linear operators. Springer-Verlag, New YorkzbMATHGoogle Scholar
  15. KL63.
    Krein M.G., Langer G.K. (1963). On the spectral function of a self-adjoint operator in a space with indefinite metric. Dokl. Akad. Nauk SSSR 152:39–42MathSciNetGoogle Scholar
  16. Lan82.
    Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Functional analysis (Dubrovnik, 1981), Volume 948 of Lecture Notes in Math., Berlin: Springer-Verlag, 1982, pp. 1–46.Google Scholar
  17. LN96.
    Langer, H., Najman, B.: A Krein space approach to the Klein–Gordon equation. Unpublished manuscript, 1996Google Scholar
  18. LNT06.
    Langer, H., Najman, B., Tretter, C.: Spectral theory of the Klein–Gordon equation in Krein spaces. Submitted, 2006Google Scholar
  19. Lun73a.
    Lundberg L.-E. (1973). Relativistic quantum theory for charged spinless particles in external vector fields. Commun. Math. Phys. 31:295–316CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. Lun73b.
    Lundberg L.-E. (1973). Spectral and scattering theory for the Klein–Gordon equation. Comm. Math. Phys. 31:243–257CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. Nai66.
    Naimark M.A. (1966). Analog of Stone’s theorem for a space with an indefinite metric. Dokl. Akad. Nauk SSSR 170:1259–1261MathSciNetGoogle Scholar
  22. Naj79.
    Najman B. (1979). Solution of a differential equation in a scale of spaces. Glas. Mat. Ser. III 14(34)(1):119–127MathSciNetGoogle Scholar
  23. Naj80a.
    Najman B. (1980). Spectral properties of the operators of Klein–Gordon type. Glas. Mat. Ser. III, 15(35)(1):97–112MathSciNetGoogle Scholar
  24. Naj80b.
    Najman B. (1980). Localization of the critical points of Klein–Gordon type operators. Math. Nachr. 99:33–42CrossRefMathSciNetzbMATHGoogle Scholar
  25. Naj83.
    Najman B. (1983). Eigenvalues of the Klein–Gordon equation. Proc. Edinburgh Math. Soc. (2) 26(2):181–190MathSciNetzbMATHCrossRefGoogle Scholar
  26. RS75.
    Reed M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975Google Scholar
  27. RS78.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978Google Scholar
  28. Sch76.
    Schechter M. (1976). The Klein–Gordon equation and scattering theory. Ann. Phys. 101(2):601–609CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. Sim71.
    Simon B. (1971). Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton University Press, Princeton NJzbMATHGoogle Scholar
  30. SSW40.
    Schiff L., Snyder H., Weinberg J. (1940). On the existence of stationary states of the mesotron field. Phys. Rev. 57:315–318CrossRefADSGoogle Scholar
  31. Tri92.
    Triebel H. (1992). Theory of function spaces. II, Volume 84 of Monographs in Mathematics. Birkhäuser Verlag, BaselGoogle Scholar
  32. Ves83.
    Veselić K. (1983). On the nonrelativistic limit of the bound states of the Klein–Gordon equation. J. Math. Anal. Appl. 96(1):63–84CrossRefMathSciNetzbMATHGoogle Scholar
  33. Wed77.
    Weder R. (1977). Selfadjointness and invariance of the essential spectrum for the Klein–Gordon equation. Helv. Phys. Acta 50(1):105–115MathSciNetGoogle Scholar
  34. Wed78.
    Weder R.A. (1978). Scattering theory for the Klein–Gordon equation. J. Funct. Anal. 27(1):100–117CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Heinz Langer
    • 1
    Email author
  • Branko Najman
    • 3
  • Christiane Tretter
    • 2
  1. 1.Institut für Analysis und Scientific ComputingTechnische Universität WienWienAustria
  2. 2.FB 3 – MathematikUniversität BremenBremenGermany
  3. 3.University of ZagrebZagrebCroatia

Personalised recommendations