Skip to main content
Log in

Sufficiency in Quantum Statistical Inference

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper attempts to develop a theory of sufficiency in the setting of non-commutative algebras parallel to the ideas in classical mathematical statistics. Sufficiency of a coarse-graining means that all information is extracted about the mutual relation of a given family of states. In the paper sufficient coarse-grainings are characterized in several equivalent ways and the non-commutative analogue of the factorization theorem is obtained. As an application we discuss exponential families. Our factorization theorem also implies two further important results, previously known only in finite Hilbert space dimension, but proved here in generality: the Koashi-Imoto theorem on maps leaving a family of states invariant, and the characterization of the general form of states in the equality case of strong subadditivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barndorff-Nielsen, O.: Information and exponential families in statistical theory. Wiley Series in Probability and Mathematical Statistics. Chichester: John Wiley & Sons, Ltd., 1978

  3. Barndorff-Nielsen, O.E., Gill, R., Jupp, P.E.: On quantum statistical inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 775–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blank, J., Exner, P., Havliček, M.: Hilbert space operators in quantum physics. New York: American Institute of Physics, 1994

  5. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. 1. C*- and W*–algebras, symmetry groups, decomposition of states. 2nd ed., Texts and Monographs in Physics, New York: Springer Verlag, 1987

  6. Hayden, P., Jozsa, R., Petz, D., Winter, A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246, 359–374 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Koashi, M., Imoto, N.: Operations that do not disturb partially known quantum states. Phys. Rev. A, 66, 022318 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  MathSciNet  Google Scholar 

  9. Mosonyi, M., Petz, D.: Structure of sufficient quantum coarse-grainings. Lett. Math. Phys. 68, 19–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

  11. Nielsen, M.A., Petz, D.: A simple proof of the strong subadditivity inequality. Quantum Information & Computation 5, 507–513 (2005)

    MathSciNet  Google Scholar 

  12. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Heidelberg:Springer-Verlag, 1993, 2nd edition, 2004

  13. Petz, D.: Direct integral of multifunctions into von Neumann algebras. Studia Sci. Math. Hungar. 18, 239–245 (1978)

    MathSciNet  Google Scholar 

  14. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 21, 57–65 (1986)

    Article  MathSciNet  Google Scholar 

  16. Petz, D.: Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford, 39, 907–1008 (1988)

    MathSciNet  Google Scholar 

  17. Petz, D.: Geometry of canonical correlation on the state space of a quantum system. J. Math. Phys. 35, 780–795 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Petz, D.: Discrimination between states of a quantum system by observations. J Funct. Anal. 120, 82–97 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15, 79–91 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ruskai, M.B.: Inequalities for quantum entropy: A review with conditions with equality. J. Math. Phys. 43, 4358–4375 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Schumacher, B.W., Nielsen, M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629–2635 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Schwartz, J.T.: W * -algebras. New York-London-Paris: Gordon and Breach Science Publishers, 1967

  23. Strătilă, Ş: Modular theory of operator algebras. Tunbridge Wells: Abacus Press, 1981

  24. Strasser, H.: Mathematical theory of statistics. Statistical experiments and asymptotic decision theory. Berlin: Walter de Gruyter, 1985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Jenčová.

Additional information

Communicated by M.B. Ruskai

Supported by the EU Research Training Network Quantum Probability with Applications to Physics, Information Theory and Biology and Center of Excellence SAS Physics of Information I/2/2005.

Supported by the Hungarian grant OTKA T032662

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenčová, A., Petz, D. Sufficiency in Quantum Statistical Inference. Commun. Math. Phys. 263, 259–276 (2006). https://doi.org/10.1007/s00220-005-1510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1510-7

Keywords

Navigation