Skip to main content
Log in

Mott Law as Lower Bound for a Random Walk in a Random Environment

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a random walk on the support of an ergodic stationary simple point process on ℝd, d≥2, which satisfies a mixing condition w.r.t. the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depend on the energies through a factor of the Boltzmann-type. This is an effective model for the phonon-induced hopping of electrons in disordered solids within the regime of strong Anderson localization. We show that the rescaled random walk converges to a Brownian motion whose diffusion coefficient is bounded below by Mott's law for the variable range hopping conductivity at zero frequency. The proof of the lower bound involves estimates for the supercritical regime of an associated site percolation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambegoakar, V., Halperin, B.I., Langer, J.S.: Hopping Conductivity in Disordered Systems. Phys, Rev B 4, 2612–2620 (1971)

    Article  ADS  Google Scholar 

  2. Bellissard, J., Rebolledo, R., Spehner, D., von Waldenfels, W.: In preparation

  3. Bellissard, J., Hermann, D., Zarrouati, M.: Hull of Aperiodic Solids and Gap Labelling Theorems. In: Directions in Mathematical Quasicrystals, M.B. Baake, R.V. Moody, eds., CRM Monograph Series, Volume 13, Providence, RI: Amer. Math.Soc., (2000) 207–259

  4. Billingsley, P.: Convergence of Probability Measures. New York: Wiley, 1968

  5. Bolthausen, E., Sznitman, A.-S.: Ten lectures on random media. DMV Seminar 32 Basel: Birkhäuser, 2002

  6. Breiman, L.: Probability. Reading, MA: Addison–Wesley, 1953

  7. Daley, D.J., Vere–Jones, D.: An Introduction to the Theory of Point Processes. New York: Springer, 1988

  8. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An Invariance Principle for Reversible Markov Processes. Applications to Random Motions in Random Environments. J. Stat. Phys. 55, 787–855 (1989)

    MATH  Google Scholar 

  9. Efros, A.L., Shklovskii, B.I.: Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State Phys. 8, L49–L51 (1975)

    Google Scholar 

  10. Faggionato, A., Martinelli, F.: Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127, 535–608 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Franken, P., König, D., Arndt, U., Schmidt, V.: Queues and Point Processes. Berlin: Akadamie-Verlag, 1981

  12. Grimmett, G.: Percolation. Second Edition, Grundlehren 321, Berlin: Springer, 1999

  13. Kipnis, C., Varadhan, S.R.S.: Central Limit Theorem for Additive Functionals of Reversible Markov Processes and Applications to Simple Exclusion. Commun. Math. Phys. 104, 1–19 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Kallenberg, O.: Foundations of Modern Probability. Second Edition, New York: Springer-Verlag, 2001

  15. Kirsch, W., Lenoble, O., Pastur, L.: On the Mott formula for the a.c. conductivity and binary correlators in the strong localization regime of disordered systems. J. Phys. A: Math. Gen. 36, 12157–12180 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Ladieu, F., Bouchaud, J.-P.: Conductance statistics in small GaAs:Si wires at low temperatures: I. Theoretical analysis: truncated quantum fluctuations in insulating wires. J. Phys. I France 3, 2311–2320 (1993)

    Google Scholar 

  17. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. Lecture Notes in Mathematics, Vol. 1717, Berlin-Heidelberg-Newyork: Springer, 2000

  18. Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. Wiley Series in Probability and Mathematical Physics, Newyork: Wiley, 1978

  19. Meester, R., Roy, R.: Continuum Percolation. Cambridge: Cambridge University Press, 1996

  20. Miller, A., Abrahams, E.: Impurity Conduction at Low Concentrations. Phys. Rev. 120, 745–755 (1960)

    Article  ADS  MATH  Google Scholar 

  21. Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Mott, N.F.: J. Non-Crystal. Solids 1, 1 (1968); N. F. Mott, Phil. Mag 19, 835 (1969); Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystaline Materials. New York: Oxford University Press, 1979

    Article  Google Scholar 

  23. Owhadi, H.: Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Related Fields 125, 225–258, (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Quastel, J.: Diffusion in Disordered Media. In: Funaki, T., Woyczinky, W., eds., Proceedings on stochastic method for nonlinear P.D.E., IMA volumes in Mathematics 77, New York: Springer Verlag, 1995, pp. 65–79

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I-IV. San Diego: Academic Press, 1980

  26. Rosenblatt, M.: Markov Processes. Structure and Asymptotic Behavior. Grundlehren 184, Berlin: Springer, 1971

  27. Shklovskii, B., Efros, A.L.: Electronic Properties of Doped Semiconductors. Berlin: Springer, 1984

  28. Spehner, D.: Contributions à la théorie du transport électronique dissipatif dans les solides apériodiques. PhD Thesis, Toulouse, 2000

  29. Spohn, H.: Large Scale Dynamics of Interacting Particles. Berlin: Springer, 1991

  30. Thorisson, H.: Coupling, Stationarity, and Regeneration. New York: Springer, 2000

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faggionato, A., Schulz-Baldes, H. & Spehner, D. Mott Law as Lower Bound for a Random Walk in a Random Environment. Commun. Math. Phys. 263, 21–64 (2006). https://doi.org/10.1007/s00220-005-1492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1492-5

Keywords

Navigation