Skip to main content
Log in

Fermionic Quantization of Hopf Solitons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we show how to quantize Hopf solitons using the Finkelstein-Rubinstein approach. Hopf solitons can be quantized as fermions if their Hopf charge is odd. Symmetries of classical minimal energy configurations induce loops in configuration space which give rise to constraints on the wave function. These constraints depend on whether the given loop is contractible. Our method is to exploit the relationship between the configuration spaces of the Faddeev-Hopf and Skyrme models provided by the Hopf fibration. We then use recent results in the Skyrme model to determine whether loops are contractible. We discuss possible quantum ground states up to Hopf charge Q=7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adkins, G.S., Nappi, C.R., Witten, E.: Static properties of nucleons in the Skyrme model. Nucl. Phys. B228, 552 (1983)

    Google Scholar 

  2. Aratyn, H., Ferreira, L.A., Zimerman, A.H.: Exact static soliton solutions of 3+1 dimensional integrable theory with nonzero Hopf numbers. Phys. Rev. Lett. 83, 1723–1726 (1999)

    Article  ADS  Google Scholar 

  3. Auckly, D., Kapitanski, L.: Holonomy and Skyrme's model. Commun. Math. Phys. 240, 97–122 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Auckly, D., Speight, J.M.: Fermionic quantization and configuration spaces for the Skyrme and Faddeev-Hopf models. http://arxiv.org/list/, 2004

  5. Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Classical Topology and Quantum States. Chap. 13.4, Singapore: World Scientific, 1991

  6. Bander, M., Hayot, F.: Instability of rotating chiral solitons. Phys. Rev. D 30, 1837 (1984)

    Article  ADS  Google Scholar 

  7. Battye, R.A., Sutcliffe, P.M.: Knots as stable soliton solutions in a three-dimensional classical field theory. Phys. Rev. Lett. 81, 4798 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Battye, R.A., Sutcliffe, P.M.: Solitons, links and knots. Proc. Roy. Soc. Lond. A455, 4305 (1999)

  9. Braaten, E., Ralston, J.P.: Limitations of a semiclassical treatment of the Skyrmion. Phys. Rev. D 31, 598 (1985)

    Article  ADS  Google Scholar 

  10. Faddeev, L.D.: Quantisation of solitons. Preprint IAS Print-75-QS70, Princeton, 1975

  11. Faddeev, L.D., Niemi, A.J.: Knots and particles. Nature 387, 58 (1997)

    Article  ADS  Google Scholar 

  12. Finkelstein, D., Rubinstein, J.: Connection between spin, statistics, and kinks. J. Math. Phys. 9, 1762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gipson, J.M., Tze, H.C.: Possible heavy solitons in the strongly coupled Higgs sector. Nucl. Phys. B183, 524 (1980)

  14. Giulini, D.: On the Possibility of Spinorial Quantization in the Skyrme Model. Mod. Phys. Lett. A 8, 1917–1924 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Gladikowski, J., Hellmund, M.: Static solitons with non-zero Hopf number. Phys. Rev. D56, 5194–5199 (1997)

    Google Scholar 

  16. Hietarinta, J., Salo, P.: Faddeev-Hopf knots: Dynamics of linked un-knots. Phys. Lett. B451, 60–67 (1999)

    Google Scholar 

  17. Hietarinta, J., Salo, P.: Ground state in the Faddeev-Skyrme model. Phys. Rev. D62, 081701 (2000)

  18. Houghton, C.J., Manton, N.S., Sutcliffe, P.M.: Rational maps, monopoles and skyrmions. Nucl. Phys. B510, 507 (1998)

  19. Jones, H.F.: Groups, representations and physics. Bristol, UK: Adam Hilger, 1990, p. 80

  20. Krusch, S.: Homotopy of rational maps and the quantization of Skyrmions. Ann. Phys. 304, 103–127 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kundu, A., Rybakov, Y.P.: Closed vortex type solitons with Hopf index. J. Phys. A15, 269–275 (1982)

    Google Scholar 

  22. Leese, R.A., Manton, N.S., Schroers, B.J.: Attractive channel Skyrmions and the Deuteron. Nucl. Phys. B 442, 228 (1995)

    Article  ADS  Google Scholar 

  23. McCleary, J.: User's guide to spectral sequences. Delaware: Publish or Perish, 1985, p. 102

  24. Meissner, U.G.: Toroidal solitons with unit Hopf charge. Phys. Lett. B 154, 190–192 (1985)

    Article  ADS  Google Scholar 

  25. Pontyagin, L.: A classification of mappings of the 3-dimensional complex into the 2-dimensional sphere. Mat. Sbornik N.S. 9:51, 331–363 (1941)

    Google Scholar 

  26. Su, W.C.M.: Faddeev-Skyrme model and rational maps. Chin. J. Phys. 40, 516 (2002)

    Google Scholar 

  27. Su, W.-C.: Semiclassical quantization of Hopf solitons. Phys. Lett. B525, 201–204 (2002)

    Google Scholar 

  28. Skyrme, T.H.R.: A nonlinear field theory. Proc. Roy. Soc. Lond. A260, 127 (1961)

    Google Scholar 

  29. Vakulenko, A.F., Kapitansky, L.V.: Stability of solitons in S(2) in the nonlinear sigma model. Sov. Phys. Dokl. 24, 433–434 (1979)

    Google Scholar 

  30. Ward, R.S.: Hopf solitons on S 3 and R 3. Nonlinearity 12, 241 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Speight.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krusch, S., Speight, J. Fermionic Quantization of Hopf Solitons. Commun. Math. Phys. 264, 391–410 (2006). https://doi.org/10.1007/s00220-005-1469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1469-4

Keywords

Navigation