Skip to main content
Log in

The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let H be a Schrödinger operator on a Hilbert space , such that zero is a nondegenerate threshold eigenvalue of H with eigenfunction Ψ0. Let W be a bounded selfadjoint operator satisfying 〈 Ψ0, WΨ0〈>0. Assume that the resolvent (Hz)−1 has an asymptotic expansion around z=0 of the form typical for Schrödinger operators on odd-dimensional spaces. Let H(ɛ) =HW for ɛ>0 and small. We show under some additional assumptions that the eigenvalue at zero becomes a resonance for H(ɛ), in the time-dependent sense introduced by A. Orth. No analytic continuation is needed. We show that the imaginary part of the resonance has a dependence on ɛ of the form ɛ2+(ν/2) with the integer ν≥−1 and odd. This shows how the Fermi Golden Rule has to be modified in the case of perturbation of a threshold eigenvalue. We give a number of explicit examples, where we compute the ``location'' of the resonance to leading order in ɛ. We also give results, in the case where the eigenvalue is embedded in the continuum, sharpening the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications Inc., 1992 (Reprint of the 1972 edition)

  2. Agmon, S., Herbst, I., Skibsted, E.: Perturbation of embedded eigenvalues in the generalized N-body problem. Commun. Math. Phys. 122(3), 411–438 (1989)

    Google Scholar 

  3. Amrein, W.O., Jauch, J.M., Sinha, K.B.: Scattering theory in quantum mechanics. Reading, MA-London-Amsterdam: W. A. Benjamin, Inc., 1977

  4. Baumgartner, B.: Interchannel resonances at a threshold. J. Math. Phys. 37, 5928–5938 (1996)

    Google Scholar 

  5. Bollé, D.: Schrödinger operators at threshold. In: Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge: Cambridge Univ. Press, 1992, pp. 173–196

  6. Costin, O., Soffer, A.: Resonance theory for Schrödinger operators. Commun. Math. Phys. 224(1), 133–152 (2001)

    Google Scholar 

  7. Dereziński, J., Jakšić, V.: Spectral theory of Pauli-Fierz operators. J. Funct. Anal. 180(2), 243–327 (2001)

    Google Scholar 

  8. Dym, H., Katsnelson, V.: Contributions of Issai Schur to analysis. In: Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math. 210, Boston, MA: Birkhäuser Boston, 2003 pp. xci-clxxxviii

  9. Eschwé, D., Langer, M.: Variational principles for eigenvalues of self-adjoint operator functions. Integral Equations Operator Theory 49(3), 287–321 (2004)

    Google Scholar 

  10. Ergodan, M.B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I. http://arXiv.org/ list/math.AP/0410431, 2004

  11. Gesztesy, F., Holden, H.: A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 123(1), 181–198 (1987)

    Google Scholar 

  12. Gesztesy, F., Holden, H.: Addendum: ``A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants'' [J. Math. Anal. Appl. 123(1), 181–198 (1987)], J. Math. Anal. Appl. 132(1), 309 (1988)

  13. Grigis, A., Klopp, F.: Valeurs propres et résonances au voisinage d'un seuil. Bull. Soc. Math. France 124(3), 477–501. (1996)

    Google Scholar 

  14. Howland, J.: The Livsic matrix in perturbation theory. J. Math. Anal. Appl. 50, 415–437 (1975)

    Google Scholar 

  15. Hunziker, W.: Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132(1), 177–188 (1990)

    Google Scholar 

  16. Jakšić, V., Kritchevski, E., Pillet, C.-A.: Mathematical theory of the Wigner-Weisskopf atom. In: Lecturer Notes for the summer-school ``Large Coulomb Systems–QED', Nordfjordeid, August 11–18, 2003

  17. Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L2(Rm), m≥5. Duke Math. J. 47, 57–80 (1980)

  18. Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)

    Google Scholar 

  19. Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds. Rev. Math. Phys. 13(6), 717–754 (2001)

    Google Scholar 

  20. Jensen, A., Nenciu, G.: Erratum: ``A unified approach to resolvent expansions at thresholds'' [Rev. Math. Phys. 13(6), 717–754 (2001)], Rev. Math. Phys. 16(5), 675–677 (2004)

  21. King, C.: Exponential decay near resonance, without analyticity. Lett. Math. Phys. 23, 215–222 (1991)

    Google Scholar 

  22. King, C.: Resonant decay of a two state atom interacting with a massless non-relativistic quantised scalar field. Commun. Math. Phys. 165(3), 569–594 (1994)

    Google Scholar 

  23. Klopp, F.: Resonances for perturbations of a semiclassical periodic Schrödinger operator. Ark. Mat. 32(2), 323–371 (1994)

    Google Scholar 

  24. Merkli, M., Sigal, I.M.: A time-dependent theory of quantum resonances. Commun. Math. Phys. 201(3), 549–576 (1999)

    Google Scholar 

  25. Murata, M.: Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49(1), 10–56 (1982)

    Google Scholar 

  26. Newton, R.G.: Scattering theory of waves and particles. Second ed., Texts and Monographs in Physics, New York: Springer-Verlag, 1982

  27. Orth, A.: Quantum mechanical resonance and limiting absorption: the many body problem. Commun. Math. Phys. 126(3), 559–573 (1990)

    Google Scholar 

  28. Rauch, J.: Perturbation theory for eigenvalues and resonances of Schrödinger Hamiltonians. J. Funct. Anal. 35(3), 304–315 (1980)

    Google Scholar 

  29. Reed, M., Simon, B.: Methods of modern mathematical physics. IV: Analysis of operators. New York: Academic Press, 1978

  30. Simon, B.: Resonances in N-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. of Math. 97(2), 247–274 (1973)

    Google Scholar 

  31. Sjöstrand, J., Zworski, M.: Elementary linear algebra for advanced spectral problems. Preprint, December 2003, http://math.berkeley.edu/~zworski/, 2003

  32. Skibsted, E.: Truncated Gamow functions, α-decay and the exponential law. Commun. Math. Phys. 104(4), 591–604 (1986)

    Google Scholar 

  33. Soffer, A., Weinstein, M.: Time dependent resonance theory. Geom. Funct. Anal. 8, 1086–1128 (1998)

    Google Scholar 

  34. Waxler, R.: The time evolution of a class of meta-stable states. Commun. Math. Phys. 172(3), 535–549 (1995)

    Google Scholar 

  35. Yajima, K.: Time-periodic Schrödinger equations. In: Topics in the theory of Schrödinger operators, H. Araki, H. Ezawa (eds.), Singapore-River Edge, NJ: World Scientific, 2004, pp. 9–69

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Jensen.

Additional information

Communicated by B. Simon

funded by the Danish National Research Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, A., Nenciu, G. The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions. Commun. Math. Phys. 261, 693–727 (2006). https://doi.org/10.1007/s00220-005-1428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1428-0

Keywords

Navigation