Skip to main content
Log in

Renormalization Group in the Uniqueness Region: Weak Gibbsianity and Convergence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the block averaging transformation applied to lattice gas models with short range interaction in the uniqueness region below the critical temperature. We prove weak Gibbsianity of the renormalized measure and convergence of the renormalized potential in a weak sense. Since we are arbitrarily close to the coexistence region we have a diverging characteristic length of the system: the correlation length or the critical length for metastability, or both. Thus, to perturbatively treat the problem we have to use a scale–adapted expansion. Moreover, such a model below the critical temperature resembles a disordered system in the presence of Griffiths' singularity. Then the cluster expansion that we use must be graded with its minimal scale length diverging when the coexistence line is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertini, L., Cirillo, E.N.M., Olivieri, E.: Renormalization group transformations under strong mixing conditions: gibbsianess and convergence of renormalized interactions. J. Statist. Phys. 97, 831–915 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertini, L., Cirillo, E.N.M., Olivieri, E.: Graded cluster expansion for lattice systems. Commun. Math. Phys. 258, 405–443 (2005)

    Article  ADS  Google Scholar 

  3. Berretti, A.: Some properties of random Ising models. J. Statist. Phys. 38, 483–496 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bricmont, J., Kupiainen, A.: High temperature expansion and dynamical systems. Commun. Math. Phys. 178, 703–732 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bricmont, J., Kupiainen, A., Lefevere, R.: Renormalization group pathologies and the definition of Gibbs states. Commun. Math. Phys. 194, 359–388 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Cammarota, C.: The large block spin interaction. Nuovo Cimento B(11) 96, 1–16 (1986)

    Google Scholar 

  7. Cassandro, M., Gallavotti, G.: The Lavoisier law and the critical point. Nuovo Cimento B 25, 691 (1975)

    Google Scholar 

  8. Cassandro, M., Olivieri, E.: Renormalization group and analyticity in one dimension: a proof of Dobrushin's theorem. Commun. Math. Phys. 80, 255–269 (1981)

    Article  MathSciNet  Google Scholar 

  9. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Article  MATH  Google Scholar 

  10. von Dreifus, H., Klein, A., Perez, J.F.: Taming Griffiths' singularities: infinite differentiability of quenched correlation functions. Commun. Math. Phys. 170, 21–39 (1995)

    Article  MATH  Google Scholar 

  11. Dobrushin, R.L., Martirosyan, M.R.: Nonfinite perturbations of Gibbs fields. Theoret. Math. Phys. 74, 10–20 (1988)

    MathSciNet  Google Scholar 

  12. Dobrushin, R.L., Martirosyan, M.R.: Possibility of high–temperature phase transitions due to the many–particle character of the potential. Theoret. Math. Phys. 75, 443–448 (1988)

    MathSciNet  Google Scholar 

  13. Dobrushin, R.L., Shlosman, S.B.: Completely analytical Gibbs fields. Statist. Phys. Dyn. Syst., Basel-Boston: Birkhauser, 1985, pp. 371–403

  14. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions constructive description. J. Statist. Phys. 46, 983–1014 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dobrushin, R.L., Shlosman, S.B.: Non-Gibbsian states and their Gibbs description. Commun. Math. Phys. 200, 125–179 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  16. van Enter, A.C.D.: Ill–defined block–spin transformations at arbitrarily high temperatures. J. Statist. Phys. 83, 761–765 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. van Enter, A.C.D.: On the possible failure of the Gibbs property for measures on lattice systems. Disordered systems and statistical physics: rigorous results. Markov Process. Related Fields 2, 209–224 (1996)

    MATH  Google Scholar 

  18. van Enter, A.C.D., Fernández, R.: A remark on different norms and analyticity for many–particle interactions. J. Statist. Phys. 56, 965–972 (1989)

    Article  MathSciNet  Google Scholar 

  19. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position–space renormalization–group transformations: scope and limitations of Gibbsian theory. J. Statist. Phys. 72, 879–1167 (1994)

    Google Scholar 

  20. Fröhlich, J., Imbrie, J.Z.: Improved perturbation expansion for disordered systems: beating Griffiths' singularities. Commun. Math. Phys. 96, 145–180 (1984)

    MATH  Google Scholar 

  21. Gallavotti, G.: Instabilities and phase transitions in the Ising model. A review. La Rivista del Nuovo Cimento 2, 133–169 (1972)

    Google Scholar 

  22. Gallavotti, G., Martin-Löf, A., Miracle Sole, S.: In: Battelle Seattle (1971) Rencontres, A. Lenard (ed.) Lecture Notes in Phisics, Vol. 20, Berlin: Springer, 1973, pp. 162–204

  23. Hugenholtz, N.M.: On the inverse problem in statistical mechanics. Commun. Math. Phys. 85, 27–38 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103, 491–498 (1986)

    MATH  Google Scholar 

  25. Martinelli, F., Olivieri, E., Schonmann, R.: For 2–D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165, 33–47 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maes, C., Redig, F., Shlosman, S., Van Moffaert, A.: Percolation, path large deviations and weakly Gibbs states. Commun. Math. Phys. 209, 517–545 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Olivieri, E.: On a cluster expansion for lattice spin systems: a finite size condition for the convergence. J. Statist. Phys. 50, 1179–1200 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Olivieri, E., Picco, P.: Cluster expansion for D–dimensional lattice systems and finite volume factorization properties. J. Statist. Phys. 59, 221–256 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shlosman, S.B.: Path large deviation and other typical properties of the low–temperature models, with applications to the weakly Gibbs states. Markov Process. Related Fields 6, 121–133 (2000)

    MATH  MathSciNet  Google Scholar 

  30. Schonmann, R.H., Shlosman, S.B.: Complete analyticity for 2D Ising completed. Commun. Math. Phys. 170, 453–482 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bertini.

Additional information

Communicated by J.Z. Imbrie

The authors acknowledge the support of Cofinanziamento MIUR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Cirillo, E. & Olivieri, E. Renormalization Group in the Uniqueness Region: Weak Gibbsianity and Convergence. Commun. Math. Phys. 261, 323–378 (2006). https://doi.org/10.1007/s00220-005-1399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1399-1

Keywords

Navigation