Skip to main content
Log in

Loop-Erased Random Walk on a Torus in Dimensions 4 and Above

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the statistics of loop erased random walks above the upper critical dimension, 4, are different between the torus and the full space. The typical length of the path connecting a pair of sites at distance L, which scales as L2 in the full space, changes under the periodic boundary conditions to Ld/2. The results are precise for dimensions ≥5; for the dimension d=4 we prove an upper bound, conjecturally sharp up to subpolyonmial factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Geometric analysis of ø4 fields and Ising models. Parts I and II. Commun. Math. Phys. 86:1, 1–48 (1982)

    Google Scholar 

  2. Benjamini, I., Kesten, H., Peres, Y., Schramm, O.: Geometry of the Uniform Spanning Forest: Transitions in Dimensions 4, 8, 12. Ann. of Math. 160(2), 465–491 (2004)

    Google Scholar 

  3. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29:1, 1–65 (2001)

    Google Scholar 

  4. Brydges, D.C., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97:1-2, 125–148 (1985)

    Google Scholar 

  5. Debez, E., Slade, G.: The scaling limit of lattice trees in high dimensions. Commun. Math. Phys. 193:1, 69–104 (1998)

    Google Scholar 

  6. Guttmann, A.J., Bursill, R.J.: Critical exponents for the loop erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59:1/2, 1–9 (1990)

    Google Scholar 

  7. Kenyon, R.: The asymptotic distribution of the discrete Laplacian. Acta Mathematica 185:2, 239–286 (2000)

    Google Scholar 

  8. Kenyon, R.: Long range properties of spanning trees. J. Math. Phys. 41:3, 1338–1363 (2000)

    Google Scholar 

  9. Hara, T., Slade, G.: Mean-field critical behavior for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Google Scholar 

  10. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147:1, 101–136 (1992)

    Google Scholar 

  11. Hastings, M.B.: Exact Multifractal Spectra for Arbitrary Laplacian Random Walks. Phys. Rev. Lett. 88, 055506 (2002)

    Article  PubMed  Google Scholar 

  12. Kesten, H.: Hitting probabilities of random walks on ℤd. Stochastic Processes and their Applications 25, 165–184 (1987)

    Article  Google Scholar 

  13. Kozma, G.: Scaling limit of loop erased random walk — a naive approach. http://arXiv.org/abs/math.PR/0212338 , 2002

  14. Kozma, G., Schreiber, E.: An asymptotic expansion for the discrete harmonic potential. Electron. J. Proab. 9(1), 1–17 (2004)

    Google Scholar 

  15. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47:3, 655–693 (1980)

    Google Scholar 

  16. Lawler, G.F.: Loop-erased self-avoiding random walk and the Laplacian random walk. J. Phys. A 20:13, 4565 (1987)

    Google Scholar 

  17. Lawler, G.F.: The logarithmic correction for loop-erased walk in four dimensions. Proceedings of the conference in honor of Jean-Pierre Kahane (Orsay, 1993), special issue of J. Fourier Anal. Appl. 347–362 (1995)

  18. Lawler, G.F.: Intersections of random walks. Birkhäuser Boston, 1996

  19. Lawler, G.F.: Loop-erased random walk. In: Perplexing problems in probability, Boston: Birkhäuser 1999, pp 197–217

  20. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walk and uniform spanning trees. Ann. Prob. 32(1B), 939–995 (2004)

    Article  Google Scholar 

  21. Lyklema, J.W., Evertz, C., Pietronero, L.: The Laplacian random walk. Europhysics-Letters 2:2, 77–82 (1986)

    Google Scholar 

  22. Lyons, R., Peres, Y., Schramm, O.: Markov Chain Intersections and the Loop-Erased Walk. Ann. Inst. H. Poincaré Probab. Statist. 39(5), 779–791 (2003)

    Article  Google Scholar 

  23. Nguyen, B.G., Yang, W.-S.: Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys. 78:3–4, 841–876 (1995)

    Google Scholar 

  24. Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19:4, 1559–1574 (1991)

    Google Scholar 

  25. Peres, Y., Revelle, D.: Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs. http://arxiv.org/abs/math.PR/0410430, 2004

  26. Schramm, O.: Scaling limits of random walks. Israel J. Math. 118, 221–288 (2000)

    Google Scholar 

  27. Wilson, D.: Generating random spanning trees more quickly than the cover time, Twenty-Eighth Annual ACM symposium on Theory of Computing, Math. New York: ACM Press, pp. 293–303 1996

  28. Wilson, K.G.: Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior. Phys. Rev. B 4:9, 3184–3205 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamini, I., Kozma, G. Loop-Erased Random Walk on a Torus in Dimensions 4 and Above. Commun. Math. Phys. 259, 257–286 (2005). https://doi.org/10.1007/s00220-005-1388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1388-4

Keywords

Navigation