Abstract
We construct a 3+-summable spectral triple over the quantum group SU
q
(2) which is equivariant with respect to a left and a right action of
The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.
This is a preview of subscription content, access via your institution.
References
Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. 59, 65–79 (1992)
Bibikov, P.N., Kulish, P.P.: Dirac operators on the quantum group SU q (2) and the quantum sphere. J. Math. Sci. (N.Y.) 100, 2039–2050 (2000)
Biedenharn, L.C., Lohe, M.A.: Quantum group symmetry and q-tensor algebras. Singapore: World Scientific, 1995
Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics: theory and applications. Reading, MA: Addison-Wesley, 1981
Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K-Theory 28, 107–126 (2003)
Chakraborty, P. S., Pal, A.: Remark on Poincaré duality for SU q (2). http://arxiv.org/list/math.OA/0211367, 2002
Connes, A.: Noncommutative geometry. London, San Diego: Academic Press, 1994
Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)
Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2). J. Inst. Math. Jussieu 3, 17–68 (2004)
Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)
Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. C. R. Acad. Sci. Paris, Ser. I 340, 819–822 (2005).
Dabrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Centre Publications 61, Hajac, P.M., Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 49–58
Goswami, D.: Some noncommutative geometric aspects of SU q (2). http://arxiv.org/list/math-ph/0108003, 2001
Gover, A.R., Zhang, R.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I. Rev. Math. Phys. 11, 533–552 (1999)
Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. Boston: Birkhäuser, 2001
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Reading, MA: Addison-Wesley, 1989
Hawkins, E.: Noncommutative rigidity. Commun. Math. Phys. 246, 211–235 (2004)
Homma, Y.: A representation of Spin(4) on the eigenspinors of the Dirac operator on
Tokyo J. Math. 23, 453–472 (2000)
Kassel, C.: Quantum Groups. Berlin: Springer, 1995
Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links. In: Infinite dimensional lie algebras and groups, Kac, V.G. (ed.), Singapore: World Scientific, 1989, pp. 285–339
Klimyk, A.U., Schmüdgen, K.: Quantum Groups and their Representations. New York: Springer, 1998
Krähmer, U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67, 49–59 (2004)
Majid, S.: Foundations of quantum group theory. Cambridge: Cambridge Univ. Press, 1995
Majid, S.: Noncommutative Riemannian and spin geometry of the standard q-sphere. Commun. Math. Phys. 256, 255–285 (2005)
Masuda, T., Nakagami, Y., Woronowicz, S.L.: A C*-algebraic framework for quantum groups. Int. J. Math. 14, 903–1001 (2003)
Neshveyev, S., Tuset, L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254, 323–341 (2005)
Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 521–531 (1987)
Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SU q (2). J. Geom. Phys. 31, 241–264 (1999)
Schmüdgen, K., Wagner, E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. reine angew. Math. 574, 219–235 (2004)
Sitarz, A.: Equivariant spectral triples. In: Noncommutative geometry and quantum groups, banach centre publications 61, Hajac, P.M. Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 231–263
Takesaki, M.: Tomita’s theory of modular Hilbert algebras. Lecture Notes in Mathematics 128, Berlin: Springer, 1970
Woronowicz, S.L.: Compact quantum groups. In: Quantum symmetries, Connes, A., Gawedski, K., Zinn-Justin, J. (eds.), Amsterdam: Elsevier Science, 1998, pp. 845–884
Author information
Authors and Affiliations
Additional information
Communicated by A. Connes
Partially supported by Polish State Committee for Scientific Research (KBN) under grant 2 P03B 022 25.
Regular Associate of the Abdus Salam ICTP, Trieste.
Rights and permissions
About this article
Cite this article
Dabrowski, L., Landi, G., Sitarz, A. et al. The Dirac Operator on SU q (2). Commun. Math. Phys. 259, 729–759 (2005). https://doi.org/10.1007/s00220-005-1383-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-005-1383-9