Communications in Mathematical Physics

, Volume 259, Issue 3, pp 729–759 | Cite as

The Dirac Operator on SUq(2)

  • Ludwik Dabrowski
  • Giovanni Landi
  • Andrzej Sitarz
  • Walter van Suijlekom
  • Joseph C. Várilly
Article

Abstract

We construct a 3+-summable spectral triple Open image in new window over the quantum group SUq(2) which is equivariant with respect to a left and a right action of Open image in new window The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. 59, 65–79 (1992)CrossRefGoogle Scholar
  2. 2.
    Bibikov, P.N., Kulish, P.P.: Dirac operators on the quantum group SUq(2) and the quantum sphere. J. Math. Sci. (N.Y.) 100, 2039–2050 (2000)Google Scholar
  3. 3.
    Biedenharn, L.C., Lohe, M.A.: Quantum group symmetry and q-tensor algebras. Singapore: World Scientific, 1995Google Scholar
  4. 4.
    Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics: theory and applications. Reading, MA: Addison-Wesley, 1981Google Scholar
  5. 5.
    Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K-Theory 28, 107–126 (2003)CrossRefGoogle Scholar
  6. 6.
    Chakraborty, P. S., Pal, A.: Remark on Poincaré duality for SUq(2). http://arxiv.org/list/math.OA/0211367, 2002
  7. 7.
    Connes, A.: Noncommutative geometry. London, San Diego: Academic Press, 1994Google Scholar
  8. 8.
    Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)CrossRefGoogle Scholar
  9. 9.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2). J. Inst. Math. Jussieu 3, 17–68 (2004)CrossRefGoogle Scholar
  10. 10.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)Google Scholar
  11. 11.
    Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. C. R. Acad. Sci. Paris, Ser. I 340, 819–822 (2005).Google Scholar
  12. 12.
    Dabrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Centre Publications 61, Hajac, P.M., Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 49–58Google Scholar
  13. 13.
    Goswami, D.: Some noncommutative geometric aspects of SUq(2). http://arxiv.org/list/math-ph/0108003, 2001
  14. 14.
    Gover, A.R., Zhang, R.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I. Rev. Math. Phys. 11, 533–552 (1999)CrossRefGoogle Scholar
  15. 15.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. Boston: Birkhäuser, 2001Google Scholar
  16. 16.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Reading, MA: Addison-Wesley, 1989Google Scholar
  17. 17.
    Hawkins, E.: Noncommutative rigidity. Commun. Math. Phys. 246, 211–235 (2004)CrossRefGoogle Scholar
  18. 18.
    Homma, Y.: A representation of Spin(4) on the eigenspinors of the Dirac operator on Open image in new window Tokyo J. Math. 23, 453–472 (2000)Google Scholar
  19. 19.
    Kassel, C.: Quantum Groups. Berlin: Springer, 1995Google Scholar
  20. 20.
    Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra Uq(sl(2)), q-orthogonal polynomials and invariants of links. In: Infinite dimensional lie algebras and groups, Kac, V.G. (ed.), Singapore: World Scientific, 1989, pp. 285–339Google Scholar
  21. 21.
    Klimyk, A.U., Schmüdgen, K.: Quantum Groups and their Representations. New York: Springer, 1998Google Scholar
  22. 22.
    Krähmer, U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67, 49–59 (2004)CrossRefGoogle Scholar
  23. 23.
    Majid, S.: Foundations of quantum group theory. Cambridge: Cambridge Univ. Press, 1995Google Scholar
  24. 24.
    Majid, S.: Noncommutative Riemannian and spin geometry of the standard q-sphere. Commun. Math. Phys. 256, 255–285 (2005)CrossRefGoogle Scholar
  25. 25.
    Masuda, T., Nakagami, Y., Woronowicz, S.L.: A C*-algebraic framework for quantum groups. Int. J. Math. 14, 903–1001 (2003)CrossRefGoogle Scholar
  26. 26.
    Neshveyev, S., Tuset, L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254, 323–341 (2005)CrossRefGoogle Scholar
  27. 27.
    Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 521–531 (1987)Google Scholar
  28. 28.
    Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31, 241–264 (1999)CrossRefGoogle Scholar
  29. 29.
    Schmüdgen, K., Wagner, E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. reine angew. Math. 574, 219–235 (2004)MathSciNetGoogle Scholar
  30. 30.
    Sitarz, A.: Equivariant spectral triples. In: Noncommutative geometry and quantum groups, banach centre publications 61, Hajac, P.M. Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 231–263Google Scholar
  31. 31.
    Takesaki, M.: Tomita’s theory of modular Hilbert algebras. Lecture Notes in Mathematics 128, Berlin: Springer, 1970Google Scholar
  32. 32.
    Woronowicz, S.L.: Compact quantum groups. In: Quantum symmetries, Connes, A., Gawedski, K., Zinn-Justin, J. (eds.), Amsterdam: Elsevier Science, 1998, pp. 845–884Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ludwik Dabrowski
    • 1
  • Giovanni Landi
    • 2
    • 3
  • Andrzej Sitarz
    • 3
  • Walter van Suijlekom
    • 1
  • Joseph C. Várilly
    • 4
  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di TriesteTrieste
  3. 3.INFNSezione di NapoliNapoliItaly
  4. 4.Institute of PhysicsJagiellonian UniversityKrakówPoland
  5. 5.Departamento de MatemáticaUniversidad de Costa RicaCosta Rica

Personalised recommendations