Communications in Mathematical Physics

, Volume 259, Issue 3, pp 729–759 | Cite as

The Dirac Operator on SUq(2)

  • Ludwik Dabrowski
  • Giovanni Landi
  • Andrzej Sitarz
  • Walter van Suijlekom
  • Joseph C. Várilly


We construct a 3+-summable spectral triple Open image in new window over the quantum group SUq(2) which is equivariant with respect to a left and a right action of Open image in new window The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bär, C.: The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. 59, 65–79 (1992)CrossRefGoogle Scholar
  2. 2.
    Bibikov, P.N., Kulish, P.P.: Dirac operators on the quantum group SUq(2) and the quantum sphere. J. Math. Sci. (N.Y.) 100, 2039–2050 (2000)Google Scholar
  3. 3.
    Biedenharn, L.C., Lohe, M.A.: Quantum group symmetry and q-tensor algebras. Singapore: World Scientific, 1995Google Scholar
  4. 4.
    Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics: theory and applications. Reading, MA: Addison-Wesley, 1981Google Scholar
  5. 5.
    Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K-Theory 28, 107–126 (2003)CrossRefGoogle Scholar
  6. 6.
    Chakraborty, P. S., Pal, A.: Remark on Poincaré duality for SUq(2)., 2002
  7. 7.
    Connes, A.: Noncommutative geometry. London, San Diego: Academic Press, 1994Google Scholar
  8. 8.
    Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)CrossRefGoogle Scholar
  9. 9.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2). J. Inst. Math. Jussieu 3, 17–68 (2004)CrossRefGoogle Scholar
  10. 10.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)Google Scholar
  11. 11.
    Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. C. R. Acad. Sci. Paris, Ser. I 340, 819–822 (2005).Google Scholar
  12. 12.
    Dabrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. In: Noncommutative Geometry and Quantum Groups, Banach Centre Publications 61, Hajac, P.M., Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 49–58Google Scholar
  13. 13.
    Goswami, D.: Some noncommutative geometric aspects of SUq(2)., 2001
  14. 14.
    Gover, A.R., Zhang, R.B.: Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I. Rev. Math. Phys. 11, 533–552 (1999)CrossRefGoogle Scholar
  15. 15.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. Boston: Birkhäuser, 2001Google Scholar
  16. 16.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Reading, MA: Addison-Wesley, 1989Google Scholar
  17. 17.
    Hawkins, E.: Noncommutative rigidity. Commun. Math. Phys. 246, 211–235 (2004)CrossRefGoogle Scholar
  18. 18.
    Homma, Y.: A representation of Spin(4) on the eigenspinors of the Dirac operator on Open image in new window Tokyo J. Math. 23, 453–472 (2000)Google Scholar
  19. 19.
    Kassel, C.: Quantum Groups. Berlin: Springer, 1995Google Scholar
  20. 20.
    Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra Uq(sl(2)), q-orthogonal polynomials and invariants of links. In: Infinite dimensional lie algebras and groups, Kac, V.G. (ed.), Singapore: World Scientific, 1989, pp. 285–339Google Scholar
  21. 21.
    Klimyk, A.U., Schmüdgen, K.: Quantum Groups and their Representations. New York: Springer, 1998Google Scholar
  22. 22.
    Krähmer, U.: Dirac operators on quantum flag manifolds. Lett. Math. Phys. 67, 49–59 (2004)CrossRefGoogle Scholar
  23. 23.
    Majid, S.: Foundations of quantum group theory. Cambridge: Cambridge Univ. Press, 1995Google Scholar
  24. 24.
    Majid, S.: Noncommutative Riemannian and spin geometry of the standard q-sphere. Commun. Math. Phys. 256, 255–285 (2005)CrossRefGoogle Scholar
  25. 25.
    Masuda, T., Nakagami, Y., Woronowicz, S.L.: A C*-algebraic framework for quantum groups. Int. J. Math. 14, 903–1001 (2003)CrossRefGoogle Scholar
  26. 26.
    Neshveyev, S., Tuset, L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254, 323–341 (2005)CrossRefGoogle Scholar
  27. 27.
    Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 521–531 (1987)Google Scholar
  28. 28.
    Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31, 241–264 (1999)CrossRefGoogle Scholar
  29. 29.
    Schmüdgen, K., Wagner, E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. reine angew. Math. 574, 219–235 (2004)MathSciNetGoogle Scholar
  30. 30.
    Sitarz, A.: Equivariant spectral triples. In: Noncommutative geometry and quantum groups, banach centre publications 61, Hajac, P.M. Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 231–263Google Scholar
  31. 31.
    Takesaki, M.: Tomita’s theory of modular Hilbert algebras. Lecture Notes in Mathematics 128, Berlin: Springer, 1970Google Scholar
  32. 32.
    Woronowicz, S.L.: Compact quantum groups. In: Quantum symmetries, Connes, A., Gawedski, K., Zinn-Justin, J. (eds.), Amsterdam: Elsevier Science, 1998, pp. 845–884Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ludwik Dabrowski
    • 1
  • Giovanni Landi
    • 2
    • 3
  • Andrzej Sitarz
    • 3
  • Walter van Suijlekom
    • 1
  • Joseph C. Várilly
    • 4
  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di TriesteTrieste
  3. 3.INFNSezione di NapoliNapoliItaly
  4. 4.Institute of PhysicsJagiellonian UniversityKrakówPoland
  5. 5.Departamento de MatemáticaUniversidad de Costa RicaCosta Rica

Personalised recommendations