Skip to main content
Log in

Principal Fibrations from Noncommutative Spheres

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct noncommutative principal fibrations S θ 7S θ 4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. “The algebra inclusion is an example of a not-trivial quantum principal bundle.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschieri, P., Bonechi, F.: On the noncommutative geometry of twisted spheres. Lett. Math. Phys. 59, 133–156 (2002)

    Article  Google Scholar 

  2. Atiyah M. F.: The Geometry of Yang-Mills Fields. Fermi Lectures. Scuola Normale Pisa, 1979

  3. Atiyah, M. F., Hitchin, N. J., Drinfeld, V. G., Manin, Yu. I.: Construction of instantons. Phys. Lett. A65, 185–187 (1978)

    Google Scholar 

  4. Bonechi, F., Ciccoli, N., Dabrowski, L. D, Tarlini, M.: Bijectivity of the canonical map for the noncommutative instanton bundle. J. Geom. Phys. 51, 419–432 (2004)

    Article  Google Scholar 

  5. Brzeziński, T., Dabrowski, L., Zielinski, B.: Hopf fibration and monopole connection over the contact quantum spheres. J. Geom. Phys. 51, 71–81 (2004)

    Article  Google Scholar 

  6. Brzeziński, T., Hajac, P. M.: The Chern-Galois character. C.R. Acad. Sci. Paris Ser. I 338, 113–116 (2004)

    Google Scholar 

  7. Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993)

    Article  Google Scholar 

  8. Chern, S., Hu, X.: Equivariant Chern character for the invariant Dirac operator. Michigan Math. J. 44, 451–473 (1997)

    Article  Google Scholar 

  9. Connes, A.: Noncommutative Geometry. San Diego: Academic Press, 1994

  10. Connes, A., Dubois-Violette, M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)

    Google Scholar 

  11. Connes, A., Landi, G.: Noncommutative manifolds: The instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)

    Google Scholar 

  12. Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174–243 (1995)

    Article  Google Scholar 

  13. Dabrowski, L., Grosse, H., Hajac, P. M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 220, 301–331 (2001)

    Article  Google Scholar 

  14. Dabrowski, L., Hajac, P.M., Siniscalco, P.: Explicit Hopf-Galois description of induced Frobenius homomorphisms. In: D. Kastler et. al., (ed.) Enlarged Proceedings of the ISI GUCCIA Workshop on Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions. Commack-NY: Nova Science Pub., 1999, pp. 279–298

  15. Dubois-Violette M.: Equations de Yang et Mills, modèles σ à deux dimensions et généralisation. In: ‘Mathématique et Physique’, Progress in Mathematics, Vol. 37, Basel-Boston:Birkhäuser 1983, pp. 43–64; Dubois-Violette, M., Georgelin, Y.: Gauge theory in terms of projector valued fields. Phys. Lett. 82B, 251–254 (1979)

    Article  Google Scholar 

  16. Durdevich, M.: Geometry of quantum principal bundles I. Commun. Math. Phys. 175, 427–521 (1996) Durdevich, M.: Geometry of quantum principal bundles II. Rev. Math. Phys. 9, 531–607 (1997)

    Google Scholar 

  17. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Boston: Birkhäuser, 2001

  18. Hajac, P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182,579–617 (1996)

    Google Scholar 

  19. Hajac, P.M., Majid, S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)

    Article  Google Scholar 

  20. Hajac, P.M., Matthes, R., Szymański, W.: A locally trivial quantum Hopf fibration. http://arXiv. org/list/math.QA/0112317, 2001, to appear in Algebra and Representation Theory

  21. Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30, 675–692 (1981)

    Article  Google Scholar 

  22. Lam, T.Y.: Lectures on modules and rings. New-York: Springer-Verlag, 1999

  23. Landi, G.: An Introduction to Noncommutative Spaces and their Geometry. Berlin: Springer-Verlag, 1997

  24. Landi, G.: Deconstructing monopoles and instantons. Rev. Math. Phys. 12, 1367–1390 (2000)

    Article  Google Scholar 

  25. Landi, G.: Talk at the Mini-workshop on Noncommutative Geometry Between Mathematics and Physics, Ancona, February 23–24, 2001

  26. Landi, G., van Suijlekom, W.: In preparation

  27. Loday, J.-L.: Cyclic Homology. Berlin: Springer-Verlag, 1992

  28. Montgomery, S.: Hopf algebras and their actions on rings. Providence, RI:AMS, 1993

  29. Rieffel, M.A.: Non-commutative tori - A case study of non-commutative differentiable manifolds. Contemp. Math. 105, 191–212 (1990)

    Google Scholar 

  30. Schauenburg, P., Schneider, H.-J.: Galois type extensions and Hopf algebras. To be published

  31. Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Landi.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, G., Suijlekom, W. Principal Fibrations from Noncommutative Spheres. Commun. Math. Phys. 260, 203–225 (2005). https://doi.org/10.1007/s00220-005-1377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1377-7

Keywords

Navigation