Skip to main content
Log in

Graded Cluster Expansion for Lattice Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we develop a general theory which provides a unified treatment of two apparently different problems. The weak Gibbs property of measures arising from the application of Renormalization Group maps and the mixing properties of disordered lattice systems in the Griffiths’ phase. We suppose that the system satisfies a mixing condition in a subset of the lattice whose complement is sparse enough namely, large regions are widely separated. We then show how it is possible to construct a convergent multi-scale cluster expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benfatto, G., Marinari, E., Olivieri, E.: Some numerical results on the block spin transformation for the 2D Ising model at the critical point. J. Statist. Phys. 78, 731–757 (1995)

    Google Scholar 

  2. Bertini, L., Cirillo, E.N.M., Olivieri, E.: Renormalization group transformations under strong mixing conditions: Gibbsianess and convergence of renormalized interactions. J. Statist. Phys. 97, 831–915 (1999)

    Google Scholar 

  3. Bertini, L., Cirillo, E.N.M., Olivieri, E.: A combinatorial proof of tree decay of semi–invariants. J. Statist. Phys. 115, 395–413 (2004)

    MathSciNet  Google Scholar 

  4. Bertini, L., Cirillo, E.N.M., Olivieri, E.: Random perturbations of general strong mixing systems: turning Griffiths’ singularity. In preparation

  5. Bertini, L., Cirillo, E.N.M., Olivieri, E.: Renormalization group in the uniqueness region: weak Gibbsianity and convergence. http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=04-208, 2004

  6. Bricmont, J., Kupiainen, A.: Phase transition in the 3d random field Ising model. Commun. Math. Phys. 116, 539–572 (1988)

    Google Scholar 

  7. Bricmont, J., Kupiainen, A., Lefevere, R.: Renormalization group pathologies and the definition of Gibbs states. Commun. Math. Phys. 194, 359–388 (1998)

    Google Scholar 

  8. Cammarota, C.: The large block spin interaction. Nuovo Cimento B(11) 96, 1–16 (1986)

    Google Scholar 

  9. Cancrini, N., Martinelli, F.: Comparison of finite volume canonical and gran canonical Gibbs measures under a mixing condition. Markov Process. Related Fields 6, 23–72 (2000)

    Google Scholar 

  10. Cassandro, M., Gallavotti, G.: The Lavoisier law and the critical point. Nuovo Cimento B 25, 691–705 (1975)

    Google Scholar 

  11. Cassandro, M., Olivieri, E.: Renormalization group and analyticity in one dimension: a proof of Dobrushin’s theorem. Commun. Math. Phys. 80, 255–269 (1981)

    Google Scholar 

  12. Cirillo, E.N.M., Olivieri, E.: Renormalization group at criticality and complete analyticity of constrained models: a numerical study. J. Statist. Phys. 86, 1117–1151 (1997)

    Google Scholar 

  13. Dobrushin, R.L.: A Gibbsian representation for non–Gibbsian field. Lecture given at the workshop “Probability and Physics,” September 1995, Renkum (The Netherlands)

  14. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of Gibbs fields. In: Dynamical Systems: Rigorous Results, Fritz, J., Jaffe, A., Szasz, D. (eds.), Basel: Birkhauser, 1985, pp. 347–370

  15. Dobrushin, R.L., Shlosman, S.B.: Completely analytical Gibbs fields. In: Statist. Phys. and Dyn. Syst. (Rigorous Results), Basel: Birkhauser, 1985, pp. 371–403

  16. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions constructive description. J. Stat. Phys. 46, 983–1014 (1987)

    Google Scholar 

  17. Dobrushin, R.L., Shlosman, S.B.: Non-Gibbsian states and their Gibbs description. Commun. Math. Phys. 200, 125–179 (1999)

    Google Scholar 

  18. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Google Scholar 

  19. von Dreifus, H., Klein, A., Perez, J.F.: Taming Griffiths’ singularities: infinite differentiability of quenched correlation functions. Commun. Math. Phys. 170, 21–39 (1995)

    Google Scholar 

  20. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position–space renormalization–group transformations: scope and limitations of Gibbsian theory. J. Statist. Phys. 72, 879–1167 (1994)

    Google Scholar 

  21. Fröhlich, J., Imbrie, J.Z.: Improved perturbation expansion for disordered systems: beating Griffiths’ singularities. Commun. Math. Phys. 96, 145–180 (1984)

    Google Scholar 

  22. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Google Scholar 

  23. Gallavotti, G., Knops, H.J.F.: Block-spins interactions in the Ising model. Commun. Math. Phys. 36, 171–184 (1974)

    Google Scholar 

  24. Gawedzki, K., Kotecký, R., Kupiainen, A.: Coarse–graining approach to first order phase transitions. In: Proceedings of the symposium on statistical mechanics of phase transitions – mathematical and physical aspects, Trebon 1986. J. Statist. Phys. 47, 701–724 (1987)

    Google Scholar 

  25. Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Second edition. New York: Springer–Verlag, 1987

  26. Griffiths, R.B.: Non–analityc behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969)

    Google Scholar 

  27. Griffiths, R.B., Pearce, P.A.: Mathematical properties of position–space renormalization group transformations. J. Statist. Phys. 20, 499–545 (1979)

    Google Scholar 

  28. Haller, K., Kennedy, T.: Absence of renormalization group pathologies near the critical temperature. Two examples. J. Statist. Phys. 85, 607–637 (1996)

    Google Scholar 

  29. Israel, R.B.: Banach algebras and Kadanoff transformations in random fields. Fritz, J., Lebowitz, J.L., Szasz, D. (eds.) Esztergom 1979, Vol. II, Amsterdam: North–Holland, 1981, pp. 593–608

  30. Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103, 491–498 (1986)

    Google Scholar 

  31. Martinelli, F.: An elementary approach to finite size conditions for the exponential decay of covariance in lattice spin models. In: On Dobrushin’s way. From probability theory to statistical physics, Amer. Math. Soc. Trans. Ser. 2, 198, Amer. Math. Soc., Providence, RI: 2000, pp. 169–181

  32. Martinelli, F.: Private communication

  33. Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case. Commun. Math. Phys. 161, 447–486 (1994)

    Google Scholar 

  34. Martinelli, F., Olivieri, E.: Instability of renormalization group pathologies under decimation. J. Statist. Phys. 79, 25–42 (1995)

    Google Scholar 

  35. Martinelli, F., Olivieri, E., Schonmann, R.: For 2–D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165, 33–47 (1994)

    Google Scholar 

  36. Maes, C., Redig, F., Shlosman, S., Van Moffaert, A.: Percolation, path large deviations and weakly Gibbs states. Commun. Math. Phys. 209, 517–545 (2000)

    Google Scholar 

  37. Olivieri, E.: On a cluster expansion for lattice spin systems: a finite size condition for the convergence. J. Statist. Phys. 50, 1179–1200 (1988)

    Google Scholar 

  38. Olivieri, E., Picco, P.: Cluster expansion for D–dimensional lattice systems and finite volume factorization properties. J. Statist. Phys. 59, 221–256 (1990)

    Google Scholar 

  39. Shlosman, S.B.: Path large deviation and other typical properties of the low–temperature models, with applications to the weakly Gibbs states. Markov Process. Related Fields 6, 121–133 (2000)

    Google Scholar 

  40. Schonmann, R.H., Shlosman, S.B.: Complete analyticity for 2D Ising completed. Commun. Math. Phys. 170, 453–482 (1995)

    Google Scholar 

  41. Suto, A.: Weak singularity and absence of metastability in random Ising ferromagnets. J. Phys. A 15, L7494–L752 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bertini.

Additional information

Communicated by J.Z. Imbrie

The authors acknowledge the support of Cofinanziamento MIUR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Cirillo, E. & Olivieri, E. Graded Cluster Expansion for Lattice Systems. Commun. Math. Phys. 258, 405–443 (2005). https://doi.org/10.1007/s00220-005-1360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1360-3

Keywords

Navigation