Skip to main content
Log in

The Structure of the Ladder Insertion-Elimination Lie Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We continue our investigation into the insertion-elimination Lie algebra of Feynman graphs in the ladder case, emphasizing the structure of this Lie algebra relevant for future applications in the study of Dyson–Schwinger equations. We work out the relation to the classical infinite dimensional Lie algebra and we determine the cohomology of .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Michor, P.W., Ruppert, W.: Extension of Lie algebras. http://arxiv.org/list/math.DG/0005042, 2000

  2. Bergbauer, C., Kreimer, D.: The Hopf algebra of rooted trees in Epstein-Glaser renormalization. To appear in Ann. Henri Poincaré, http://arxiv.org/list/hep-th/0403207, 2004

  3. Broadhurst, D.J., Kreimer, D.: Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600, 403 (2001)

    Article  Google Scholar 

  4. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)

    Google Scholar 

  5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann Hilbert problem. II. The β-function, diffeomorphism and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001)

    Google Scholar 

  6. Connes, A., Kreimer, D.: Insertion and Elimination: the doubly infinite Lie algebra of Feynmann graphs. Ann. Henri Poincare 3(3), 411–433 (2002)

    Article  Google Scholar 

  7. Fuks, D.B.: The Cohomology of Inifinite Dimensional Lie Algebras., Contemporary Soviet Mathematics, New York: Consultant Bureau, 1986

  8. Gross, D.: In: Methods in QFT, Les Houches 1975, Amsterdam: North Holland Publishing, 1976

  9. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theory. Adv. Theor. Math. Phys. 2(2), 303–334 (1998)

    Google Scholar 

  10. Kreimer, D.: New mathematical structures in renormalizable quantum field theories. Annals Phys. 303, 179 (2003); [Erratum-ibid. 305, 79 (2003)], hep-th/0211136

    Article  Google Scholar 

  11. Kreimer, D.: Factorization in quantum field theory: An exercise in Hopf algebras and local singularities. Les Houches Frontiers in Number Theory, Physics and Geometry, France, March 2003, hep-th/0306020

  12. Kreimer, D.: The residues of quantum field theory: Numbers we should know. hep-th/0404090

  13. Kreimer, D.: What is the trouble with Dyson-Schwinger equations?. Nucl.Phys. Proc. Suppl. 135, 238–242 (2004)

    Article  Google Scholar 

  14. Mack, G., Todorov, I.T.: Conformal-Invariant Green Functions without Ultraviolet Divergences. Phy. Rev. D8, 1764 (1973)

  15. Mencattini, I., Kreimer, D.: Insertion-Elimination Lie algebra: the Ladder case. Lett. Math. Phys. 64, (2004) 61–74

    Google Scholar 

  16. Nikolov, N.M., Stanev, Ya.S., Todorov, I.T.: Four Dimensional CFT Models with Rational Correlation Functions. J. Phys. A 35(12), 2985–3007 (2002)

    Google Scholar 

  17. Weibel, C.: Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mencattini.

Additional information

Communicated by Y. Kawahigashi

D.K. supported by CNRS; both authors supported in parts by NSF grant DMS-0401262, Ctr. Math. Phys. at Boston Univ.; BUCMP/04-06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mencattini, I., Kreimer, D. The Structure of the Ladder Insertion-Elimination Lie Algebra. Commun. Math. Phys. 259, 413–432 (2005). https://doi.org/10.1007/s00220-005-1340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1340-7

Keywords

Navigation