Communications in Mathematical Physics

, Volume 252, Issue 1–3, pp 189–258 | Cite as

Perturbative Gauge Theory as a String Theory in Twistor Space

  • Edward Witten
Article

Abstract

Perturbative scattering amplitudes in Yang-Mills theory have many unexpected properties, such as holomorphy of the maximally helicity violating amplitudes. To interpret these results, we Fourier transform the scattering amplitudes from momentum space to twistor space, and argue that the transformed amplitudes are supported on certain holomorphic curves. This in turn is apparently a consequence of an equivalence between the perturbative expansion of Open image in new window = 4 super Yang-Mills theory and the D-instanton expansion of a certain string theory, namely the topological B model whose target space is the Calabi-Yau supermanifold Open image in new window

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parke, S., Taylor, T.: An Amplitude for N Gluon Scattering. Phys. Rev. Lett. 56, 2459 (1986)CrossRefGoogle Scholar
  2. 2.
    Berends, F.A., Giele, W.T.: Recursive Calculations for Processes with N. Gluons. Nucl. Phys. B306, 759 (1988)Google Scholar
  3. 3.
    DeWitt, B.: Quantum Theory of Gravity, III: Applications of the Covariant Theory. Phys. Rev. 162, 1239 (1967)CrossRefMATHGoogle Scholar
  4. 4.
    Bern, Z., Dixon, L., Kosower, D.: Progress in One-Loop QCD Computations. Ann. Rev. Nucl. Part. Sci. 46, 109 (1996)CrossRefGoogle Scholar
  5. 5.
    Brink, L., Scherk, J., Schwarz, J.H.: Supersymmetric Yang-Mills Theories. Nucl. Phys. B121, 77 (1977)Google Scholar
  6. 6.
    Anastasiou, C., Bern, Z., Dixon, L., Kosower, D.: Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory. Phys. Rev. Lett. 91, 251–602 (2003); Bern, Z., De Freitas, A., Dixon, L.: Two Loop Helicity Amplitudes for Quark Gluon Scattering in QCD and Gluino Gluon Scattering in Supersymmetric Yang-Mills Theory. JHEP 0306, 028 (2003)Google Scholar
  7. 7.
    Penrose, R.: Twistor Algebra. J. Math. Phys. 8, 345 (1967)MATHGoogle Scholar
  8. 8.
    Penrose, R.: The Central Programme of Twistor Theory. Chaos, Solitons, and Fractals 10, 581 (1999)Google Scholar
  9. 9.
    Ferber, A.: Supertwistors and Conformal Supersymmetry. Nucl. Phys. B132, 55 (1978)Google Scholar
  10. 10.
    Witten, E.: An Interpretation of Classical Yang-Mills Theory. Phys. Lett. B77, 394 (1978)Google Scholar
  11. 11.
    Isenberg, J., Yasskin, P.B., Green, P.S.: Nonselfdual Gauge Fields. Phys. Lett. B78, 464 (1978)Google Scholar
  12. 12.
    Nair, V.: A Current Algebra for Some Gauge Theory Amplitudes. Phys. Lett. B214, 215 (1988)Google Scholar
  13. 13.
    Maldacena, J.: The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)MATHGoogle Scholar
  14. 14.
    ’t Hooft, G.: A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B72, 461 (1974)Google Scholar
  15. 15.
    MacCallum, M.A.H., Penrose, R.: Twistor Theory: An Approach to the Quantization of Fields and Space-Time. Phys. Rept. 6C, 241 (1972)Google Scholar
  16. 16.
    Hodges, A.P., Huggett, S.: Twistor Diagrams. Surveys in High Energy Physics 1, 333 (1980); Hodges, A.: Twistor Diagrams. Physica 114A, 157 (1982); Twistor Diagrams. In: S.A. Huggett, et al. (eds.), The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, Oxford: Oxford University Press, 1998Google Scholar
  17. 17.
    Bjorken, J.D., Chen, M.C.: High Energy Trident Production with Definite Helicities. Phys. Rev. 154, 1335 (1966)CrossRefGoogle Scholar
  18. 18.
    Reading Henry, G.: Trident Production with Nuclear Targets. Phys. Rev. 154, 1534 (1967)CrossRefGoogle Scholar
  19. 19.
    Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Wu, T.T.: Single Bremsstrahlung Processes in Gauge Theory. Phys. Lett. 103B, 124 (1981); De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Helicity Amplitudes for Massless QED. Phys. Lett. B105, 215 (1981); Nucl. Phys. B206, 53 (1982); Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Multiple Bremsstrahlung in Gauge Theories at High-Energies. 2. Single Bremsstrahlung. Nucl. Phys. B206, 61 (1982)CrossRefGoogle Scholar
  20. 20.
    Kleis, R., Stirling, W.J.: Spinor Techniques for Calculating Proton Anti-Proton to W or Z Plus Jets. Nucl. Phys. B262, 235 (1985)Google Scholar
  21. 21.
    Gunion, J.F., Kunzst, Z.: Improved Analytic Techniques for Tree Graph Calculations and the Open image in new window Process. Phys. Lett. 161B, 333 (1985)CrossRefGoogle Scholar
  22. 22.
    Berends, F.A., Giele, W-T.: The Six Gluon Process as an Example of Weyl-van der Waerden Spinor Calculus. Nucl. Phys. B294, 700 (1987)Google Scholar
  23. 23.
    Xu, Z., Zhang, D.-H., Chang, L.: Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories. Nucl. Phys. B291, 392 (1987)Google Scholar
  24. 24.
    Chalmers, G., Siegel, W.: Simplifying Algebra in Feynman Graphs, Part I: Spinors. Phys. Rev. D59, 045012 (1999), Part II: Spinor Helicity from the Light Cone. Phys. Rev. D59, 045013 (1999), Part III: Massive Vectors. Phys. Rev. D63, 125027 (2001)Google Scholar
  25. 25.
    Mangano, M.L., Parke, S.J.: Multiparton Amplitudes in Gauge Theories. Phys. Rept. 200, 301 (1991)CrossRefGoogle Scholar
  26. 26.
    Dixon, L.: Calculating Scattering Amplitudes Efficiently. TASI Lectures, 1995, http:// arxiv.org/abs/hep-ph/9601359, 1996
  27. 27.
    Witten, L.: Invariants of General Relativity and the Classification of Spaces. Phys. Rev. (2) 113, 357 (1959)Google Scholar
  28. 28.
    Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Volume 2, Spinor and Twistor Methods in Spacetime Geometry. Cambridge: Cambridge University Press, 1986Google Scholar
  29. 29.
    Ward, R.S., Wells, R.O.Jr.: Twistor Geometry and Field Theory. Cambridge: Cambridge University Press, 1991Google Scholar
  30. 30.
    Hughston, L.P.: Twistors and Particles. Lecture Notes in Physics 97, Berlin: Springer-Verlag, 1989Google Scholar
  31. 31.
    Bailey, T.N., Baston, R.J. (eds.): Twistors in Mathematics and Physics. London: London Mathematical Society Lecture Notes Series, 156, 1990Google Scholar
  32. 32.
    Huggett, S.A., Tod, K.P.: An Introduction to Twistor Theory. London Mathematical Society Student Texts 4, New York: Cambridge Univ. Press, 1985Google Scholar
  33. 33.
    Penrose, R.: The Nonlinear Graviton. Gen. Rel. Grav. 7, 171 (1976)Google Scholar
  34. 34.
    Ward, R.: On Self-Dual Gauge Fields. Phys. Lett. 61A, 81 (1977)CrossRefMATHGoogle Scholar
  35. 35.
    Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-Duality in Four-Dimensional Riemannian Geometry. Proc. Roy. Soc. London Ser. A 362, 425 (1978)MATHGoogle Scholar
  36. 36.
    Atiyah, M.F.: Geometry of Yang-Mills Fields. Lezioni Fermiane, Pisa: Academia Nazionale dei Lincei and Scuola Normale Superiore, 1979Google Scholar
  37. 37.
    Penrose, R.: Twistor Quantization and Curved Spacetime. Int. J. Theor. Phys. 1, 61 (1968)Google Scholar
  38. 38.
    Mangano, M., Parke, S., Xu, Z.: Duality and Multi-Gluon Scattering. Nucl. Phys. B298, 653 (1988)Google Scholar
  39. 39.
    Berends, F.A., Giele, W.T., Kuijf, H.: Exact and Approximate Expressions for Multi-Gluon Scattering. Nucl. Phys. B333, 120 (1990)Google Scholar
  40. 40.
    Bern, Z., Dixon, L., Dunbar, D., Kosower, D.A.: One-Loop N-Point Gauge Theory Amplitudes. Unitarity and Collinear Limits, hep-ph/9403226Google Scholar
  41. 41.
    Bern, Z., Dixon, L., Kosower, D.: One Gluon Corrections to Five Gluon Amplitudes. Phys. Rev. Lett. 70, 2677 (1993)CrossRefGoogle Scholar
  42. 42.
    Bern, Z., Dixon, L., Kosower, D.A.: In: M.B. Halpern, et al. (eds.), Strings 1993, Singapore: World Scientific, 1995; Bern, Z., Chalmers, G., Koxon, L., Kosower, D.A.: Phys. Rev. Lett. 72, 2134 (1994)Google Scholar
  43. 43.
    Mahlon, G.: Multigluon Helicity Amplitudes Involving a Quark Loop. Phys. Rev. D49, 4438 (1994)Google Scholar
  44. 44.
    Mahlon, G., Yan, T.-M.: Multi-Photon Production at High Energies in the Standard Model: I. Phys. Rev. D47, 1776 (1993)Google Scholar
  45. 45.
    Bern, Z., Kosower, D.: The Computation of Loop Amplitudes in Gauge Theories. Nucl. Phys. B379, 451 (1992)Google Scholar
  46. 46.
    Bern, Z., Dixon, L., Dunbar, D.C., Kosower, D.A.: One-loop Gauge Theory Amplitudes with an Arbitrary Number of External Legs, hep-ph/9405248Google Scholar
  47. 47.
    Berends, F.A., Giele, W.T., Kuijf, H.: On Relations Between Multi-Gluon and Multi-Graviton Scattering. Phys. Lett. 211B, 91 (1988)CrossRefGoogle Scholar
  48. 48.
    Witten, E.: Mirror Manifolds and Topological Field Theory. hep-th/9112056, In: S.-T. Yau, (ed.), Mirror Symmetry, Cambridge, MA: International Press, 1998Google Scholar
  49. 49.
    Hori, K., et al. (eds.): Mirror symmetry. Providence, RI: American Mathematical Society, 2003Google Scholar
  50. 50.
    Witten, E.: Chern-Simons Gauge Theory as a String Theory. Prog. Math. 133, 637 (1995)MATHGoogle Scholar
  51. 51.
    Dijkgraaf, R., Vafa, C.: Matrix Models, Topological Strings, and Supersymmetric Gauge Theories. Nucl. Phys. B644, 3 (2002)Google Scholar
  52. 52.
    Aganagic, M., Dijkgraaf, R., Klemm, A., Marino, M., Vafa, C.: Topological Strings and Integrable Hierarchies. hep-th/0312085Google Scholar
  53. 53.
    D’Adda, A., Di Vecchia, P., Luscher, M.: Confinement and Chiral Symmetry Breaking in Open image in new window Models with Quarks. Nucl. PHys. B152, 125 (1979)Google Scholar
  54. 54.
    Witten, E.: Instantons, the Quark Model, and the 1/N Expansion. Nucl. Phys. B149, 285 (1979)Google Scholar
  55. 55.
    Zumino, B.: Supersymmetry and Kahler Manifolds. Phys. Lett. B87, 203 (1979)Google Scholar
  56. 56.
    Movshev, M., Schwarz, A.: On Maximally Supersymmetric Yang-Mills Theory. hep-th/0311132Google Scholar
  57. 57.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic Anomalies in Topological Field Theories. Nucl. Phys. B405, 279 (1993); Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes. Commun. Math. Phys. B165, 311 (1994)Google Scholar
  58. 58.
    Grisaru, M., Rocek, M., Siegel, W.: Superloops 3, Beta 0: A Calculation in N=4 Yang-Mills Theory. Phys. Rev. Lett. 45, 1063 (1980)CrossRefGoogle Scholar
  59. 59.
    Avdeev, L.V., Tarasov, O.V.: The Three Loop Beta Function in the N=1, N=2, N=4 Supersymmetric Yang-Mills Theories. Phys. Lett. B112, 356 (1982)Google Scholar
  60. 60.
    Mandelstam, S.: Light Cone Superspace and the Ultraviolet Finiteness of the N=4 Model. Nucl. Phys. B213, 149 (1983)Google Scholar
  61. 61.
    Krasnov, K.: Twistors, CFT, and Holography. hep-th/0311162Google Scholar
  62. 62.
    Atiyah, M.F., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. Princeton, NJ: Princeton University Press, 1988Google Scholar
  63. 63.
    Polchinski, J.: Dirichlet Branes and Ramond-Ramond Charges. Phys. Rev. Lett. 75, 4724 (1995)CrossRefMATHGoogle Scholar
  64. 64.
    Lazaroiu, C.: Holomorphic Matrix Models. hep-th/0303008.Google Scholar
  65. 65.
    Siegel, W.: The Open image in new window = 2(4) String is Self-Dual Open image in new window = 4 Yang-Mills. Phys. Rev. D46, R3235 (1992); Self-Dual Open image in new window = 8 Supergravity as Closed Open image in new window = 2(4) Strings, hep-th/9207043Google Scholar
  66. 66.
    Chalmers, G., Siegel, W.: The Self-Dual Sector of QCD Amplitudes. hep-th/9606061Google Scholar
  67. 67.
    Witten, E.: Small Instantons in String Theory. Nucl. Phys. B460, 541 (1996)Google Scholar
  68. 68.
    Douglas, M.R.: Gauge Fields and D-Branes. J. Geom. Phys. 28, 255 (1998)CrossRefMathSciNetMATHGoogle Scholar
  69. 69.
    Fradkin, E.S., Tseytlin, A.A.: Conformal Supergravity. Phys. Rept. 119, 233 (1985)CrossRefGoogle Scholar
  70. 70.
    Salam, A., Sezgin, E.: Supergravities in Diverse Dimensions. Vol. 2, Singapore: World Scientific, 1989Google Scholar
  71. 71.
    Bena, I., Polchinski, J., Roiban, R.: Hidden Symmetries of the AdS5× S5 Superstring. hep-th/0305116Google Scholar
  72. 72.
    Dolan, L., Nappi, C.R., Witten, E.: A Relation Among Approaches to Integrability in Superconformal Yang-Mills Theory. JHEP 0310, 017 (2003)CrossRefGoogle Scholar
  73. 73.
    Luscher, M., Pohlmeyer, K.: Scattering of Massless Lumps and Nonlocal Charges in the Two-Dimensional Classical Non-Linear Sigma Model. Nucl. Phys. B137, 46 (1978)Google Scholar
  74. 74.
    de Vega, H.J., Eichenherr, H., Maillet, J.M.: Yang-Baxter Algebras of Monodromy Matrices in Integrable Quantum Field Theories. Nucl. Phys. B240, 377 (1984)Google Scholar
  75. 75.
    Berg, B., Weisz, P.: Exact S Matrix of the Adjoint SU(N) Representation. Commun. Math. Phys. 67, 241 (1979)Google Scholar
  76. 76.
    Goldschmidt, Y., Witten, E.: Conservation Laws in Some Two-Dimensional Models. Phys. Lett. 91B, 392 (1980)CrossRefGoogle Scholar
  77. 77.
    Abdalla, E.: In: N. Sanchez, (ed.), Non-linear Equations in Classical and Quantum Field Theory. Springer Lectures in Physics, Vol. 226, Berlin-Heidelberg-New York: Springer, 1985, p. 140; Abdalla, E., Abdalla, M.C.B., Gomes, M.: Phys. Rev. D25, 452 (1982), D27, 825 (1983)Google Scholar
  78. 78.
    Berkovits, N.: Super Poincaré Covariant Quantization of the Superstring. JHEP 0004, 018 (2000), hep-th/0001035, Covariant Quantization of the Superparticle Using Pure Spinors. hep-th/0105050, JHEP 0109, 016 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Edward Witten
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations