Skip to main content
Log in

T-Duality for Torus Bundles with H-Fluxes via Noncommutative Topology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that the T-dual of a circle bundle with H-flux (given by a Neveu-Schwarz 3-form) is the T-dual circle bundle with dual H-flux. However, it is also known that torus bundles with H-flux do not necessarily have a T-dual which is a torus bundle. A big puzzle has been to explain these mysterious “missing T-duals.” Here we show that this problem is resolved using noncommutative topology. It turns out that every principal T2-bundle with H-flux does indeed have a T-dual, but in the missing cases (which we characterize), the T-dual is non-classical and is a bundle of noncommutative tori. The duality comes with an isomorphism of twisted K-theories, just as in the classical case. The isomorphism of twisted cohomology which one gets in the classical case is replaced by an isomorphism of twisted cyclic homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, E., Álvarez-Gaumé, L., Barbón, J.L.F., Lozano, Y.: Some global aspects of duality in string theory. Nucl. Phys. B415, 71–100 (1994)

    Google Scholar 

  2. Alvarez, O.: Target space duality I: General theory. Nucl. Phys. B584, 659–681 (2000); Target space duality II: Applications. Nucl. Phys. B584, 682–704 (2000)

    Google Scholar 

  3. Atiyah, M.F.: K-theory and reality. Quart. J. Math. Oxford Ser. (2) 17, 367–386 (1966)

  4. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and K-theory of group C*-algebras. In: C*-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math. 167, Providence, RI: Am. Math. Soc. 1994, pp. 240–291

  5. Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: Topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004)

    Article  Google Scholar 

  6. Bouwknegt, P., Evslin, J., Mathai, V.: On the topology and H-flux of T-dual manifolds. Phys. Rev. Lett. 92, 181601 (2004)

    Google Scholar 

  7. Bouwknegt, P., Hannabuss, K., Mathai, V.: T-duality for principal torus bundles. JHEP 03, 018 (2004)

    Article  Google Scholar 

  8. Buscher, T.: A symmetry of the string background field equations. Phys. Lett. B194, 59–62 (1987)

    Google Scholar 

  9. Buscher, T.: Path integral derivation of quantum duality in nonlinear sigma models. Phys. Lett. B201, 466–472 (1988)

    Google Scholar 

  10. Connes, A.: A survey of foliations and operator algebras. In: Operator algebras and applications, Part I (Kingston, Ont., 1980), R. V. Kadison, (ed.), Proc. Sympos. Pure Math. 38, Providence, R.I.: Am. Math. Soc. 1982, pp. 521–628

  11. Connes, A.: An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of ℝ. Adv. Math. 39(1), 31–55 (1981)

    Google Scholar 

  12. Connes, A.: Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. No. 62, 257–360 (1985). Available at http://www.numdam.org/item?id=PMIHES_1985__62__41_0

    Google Scholar 

  13. Connes, A., Douglas, M.R., Schwarz, A.: Noncommutative geometry and matrix theory: compactification on tori. J. High Energy Phys. 02, 003 (1998)

    Google Scholar 

  14. Crocker, D., Kumjian, A., Raeburn, I., Williams, D.P.: An equivariant Brauer group and actions of groups on C*-algebras. J. Funct. Anal. 146(1), 151–184 (1997)

    Article  MATH  Google Scholar 

  15. Dauns, J., Hofmann, K.H.: Representation of rings by sections. Mem. Am. Math. Soc. no. 83, Providence, R.I.: Am. Math. Soc. 1968

  16. Dixmier, J., Douady, A.: Champs continus d’espaces hilbertiens et de C*-algèbres. Bull. Soc. Math. France 91, 227–284 (1963)

    MATH  Google Scholar 

  17. Donagi, R., Pantev, T.: Torus fibrations, gerbes and duality. http://xxx.lanl.gov/abs/math.AG/0306213, 2003

  18. Donovan, P., Karoubi, M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. No. 38, 5–25 (1970). Available at http://www.numdam.org/item?id=PMIHES_1970__38__5_0

    MATH  Google Scholar 

  19. Elliott, G., Natsume, T., Nest, R.: Cyclic cohomology for one-parameter smooth crossed products. Acta Math. 160(3–4), 285–305 (1988)

    Google Scholar 

  20. Fell, J.M.G.: The structure of algebras of operator fields. Acta Math. 106, 233–280 (1961)

    MATH  Google Scholar 

  21. Gleason, A.: Spaces with a compact Lie group of transformations. Proc. Am. Math. Soc. 1, 35–43 (1950)

    MathSciNet  MATH  Google Scholar 

  22. Green, P.: The structure of imprimitivity algebras. J. Funct. Anal. 36(1), 88–104 (1980)

    MATH  Google Scholar 

  23. Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie. Textes Mathématiques, 2. Paris: CEDIC, 1980

  24. Maldacena, J., Moore, G., Seiberg, N.: D-brane instantons and K-theory charges. J. High Energy Phys. 11, 062 (2001)

    Google Scholar 

  25. Moore, C.C.: Extensions and low dimensional cohomology theory of locally compact groups. I. Trans. Am. Math. Soc. 113, 40–63 (1964)

    MATH  Google Scholar 

  26. Moore, C.C.: Group extensions and cohomology for locally compact groups. III. Trans. Am. Math. Soc. 221(1), 1–33 (1976)

    MATH  Google Scholar 

  27. Moore, G.: K-theory from a physical perspective. http://arXiv.org.abs/hep-th/0304018, 2003

  28. Packer, J., Raeburn, I., Williams, D.P.: The equivariant Brauer group of principal bundles. J. Operator Theory 36, 73–105 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Pichaud, J.: Cohomologie continue et cohomologie différentiable des groupes localement compacts. C. R. Acad. Sci. Paris Sér. I Math. 292(3), 171–173 (1981)

    MATH  Google Scholar 

  30. Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext-groups of certain cross-product C* -algebras. J. Operator Theory 4(1), 93–118 (1980)

    MATH  Google Scholar 

  31. Raeburn, I., Rosenberg, J.: Crossed products of continuous-trace C*-algebras by smooth actions. Trans. Am. Math. Soc. 305(1), 1–45 (1988)

    MATH  Google Scholar 

  32. Raeburn, I., Williams, D.P.: Dixmier–Douady classes of dynamical systems and crossed products. Can. J. Math. 45, 1032–1066 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Raeburn, I., Williams, D.P.: Topological invariants associated with the spectrum of crossed product C*-algebras. J. Funct. Anal. 116(2), 245–276 (1993)

    Article  MATH  Google Scholar 

  34. Rieffel, M.: C* -algebras associated with irrational rotations. Pacific J. Math. 93(2), 415–429 (1981)

    MATH  Google Scholar 

  35. Rosenberg, J.: Continuous-trace algebras from the bundle theoretic point of view. J. Austral. Math. Soc. Ser. A 47(3), 368–381 (1989)

    MATH  Google Scholar 

  36. Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. 09, 032 (1999)

    MATH  Google Scholar 

  37. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B479, 243–259 (1996)

    Google Scholar 

  38. Wigner, D.: Algebraic cohomology of topological groups. Trans. Am. Math. Soc. 178, 83–93 (1973)

    MATH  Google Scholar 

  39. Witten, E.: D-branes and K-theory. J. High Energy Phys. 12, 019 (1998)

    MATH  Google Scholar 

  40. Witten, E.: Overview of K-theory applied to strings. Int. J. Mod. Phys. A16, 693–706 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varghese Mathai.

Additional information

Communicated by A. Connes

VM was supported by the Australian Research Council.

JR was partially supported by NSF Grant DMS-0103647, and thanks the Department of Pure Mathematics of the University of Adelaide for its hospitality in January 2004, which made this collaboration possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathai, V., Rosenberg, J. T-Duality for Torus Bundles with H-Fluxes via Noncommutative Topology. Commun. Math. Phys. 253, 705–721 (2005). https://doi.org/10.1007/s00220-004-1159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1159-7

Keywords

Navigation