Skip to main content
Log in

Invariance Implies Gibbsian: Some New Results

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate stationary distributions of stochastic gradient systems in Riemannian manifolds and prove that, under certain assumptions, such distributions are symmetric. These results are extended to countable products of finite dimensional manifolds and applied to Gibbs distributions in the case where the single spin spaces are Riemannian manifolds. In particular, we obtain a new result concerning the question whether all invariant measures are Gibbsian. Actually, we consider a more general object: weak elliptic equations for measures, which, on the one hand, yields the results obtained stronger than the above mentioned statements, and, on the other hand, enables us to give simpler proofs of more general than previously known facts. Applications to concrete models of lattice systems over ℤ d with not necessarily compact spin space are presented (also in the case d ≥ 3 under certain assumptions of decay of interaction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Kondratiev, Yu., G., Röckner, M.: Ergodicity of L2-semigroups and extremality of Gibbs measures. J. Funct. Anal. 144, 394–423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Kondratiev, Yu.G., Röckner, M., Tsykalenko, T.: A priori estimates on symmetrizing measures and their applications to Gibbs states. J. Funct. Anal. 171, 366–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellissard, J., Høegh-Krohn, R.: Compactness and the maximal Gibbs states for random Gibbs fields on a lattice. Commun. Math. Phys. 84, 297–327 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Albeverio, S., Bogachev, V.I., Röckner, M.: On uniqueness of invariant measures for finite and infinite dimensional diffusions. Commun. Pure Appl. Math. 52, 325–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodineau, T., Helffer, B.: The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166(1), 168–178 (1999)

    Article  MATH  Google Scholar 

  6. Bogachev, V.I., Krylov, N.V., Röckner, M.: Regularity of invariant measures: the case of non-constant diffusion part. J. Funct. Anal. 138, 223–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic regularity and essential self-adjointness of Dirichlet operators on ℝn. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(3), 451–461 (1997)

    Google Scholar 

  8. Bogachev, V.I., Krylov, N.V., Röckner, M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Diff. Eq. 26, 11–12 (2001)

    MATH  Google Scholar 

  9. Bogachev, V.I., Röckner, M.: Regularity of invariant measures on finite and infinite dimensional spaces and applications. J. Funct. Anal. 133, 168–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bogachev, V.I., Röckner, M.: A generalization of Hasminskii’s theorem on existence of invariant measures for locally integrable drifts. Theor. Probab. Appl. 45, 417–436 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Bogachev, V.I., Röckner, M.: Elliptic equations for measures on infinite dimensional spaces and applications. Probab. Theor. Relat. Fields 120, 445–496 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Bogachev, V.I., Röckner, M., Stannat, W.: Uniqueness of invariant measures and essential maximal dissipativity of diffusion operators on~L1. In: Proceedings of the Colloquium ‘‘Infinite Dimensional Stochastic Analysis’’ (11–12 February 1999, Amsterdam), Clément et als., (eds.), Amsterdam: Royal Netherlands Academy, 2000, pp. 39–54

  13. Bogachev, V.I., Röckner, M., Stannat, W.: Uniqueness of solutions to elliptic equations and uniqueness of invariant measures of diffusions. Sbornik Math. 193(7), 945–976 (2002)

    Article  MATH  Google Scholar 

  14. Bogachev, V.I., Röckner, M., Wang, F.-Y.: Elliptic equations for invariant measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80, 177–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carlen, E.A., Stroock, D.W.: An application of the Bakry–Emery criterion to infinite-dimensional diffusions. Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math. 1204, Berlin: Springer, 1986, pp. 341–348

  16. Chung, L.O.: Existence of harmonic L1 functions in complete Riemannian manifolds. Proc. Am. Math. Soc. 88, 531–532 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Deuschel, J.-D., Stroock, D.W.: Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models. J. Funct. Anal. 92(1), 30–48 (1990)

    MATH  Google Scholar 

  18. Fritz, J.: Stationary measures of stochastic gradient systems, infinite lattice models. Z. Wahr. theor. verw. Geb. 59, 479–490 (1982)

    MATH  Google Scholar 

  19. Fritz, J.: On the stationary measures of anharmonic systems in the presence of a small thermal noise. J. Stat. Phys. 44(1–2), 25–47 (1986)

    Google Scholar 

  20. Fritz, J., Liverani, C., Olla, S.: Reversibility in infinite Hamiltonian systems with conservative noise. Commun. Math. Phys. 189(2), 481–496 (1997)

    Article  MATH  Google Scholar 

  21. Fritz, J., Roelly, S., Zessin, H.: Stationary states of interacting Brownian motions. Studia Sci. Math. Hungar. 34(1–3), 151–164 (1998)

    Google Scholar 

  22. Georgii H.-O.: Gibbs measures and phase transitions. Berlin: de Gruyter, 1988

  23. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36(2), 135–249 (1999)

    Article  MATH  Google Scholar 

  24. Holley, R., Stroock, D.W.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys. 55, 37–45 (1977)

    Google Scholar 

  25. Holley, R., Stroock, D.W.: Diffusions on an infinite-dimensional torus. J. Funct. Anal. 42(1), 29–63 (1981)

    MATH  Google Scholar 

  26. Kolmogoroff, A.N.: Zur Umkehrbarkeit der statistischen Naturgesetze. Math. Ann. 113, 766–772 (1937)

    MATH  Google Scholar 

  27. Laroche, E.: Hypercontractivité pour des systémes de spins de portée infinie. Probab. Theory Relat. Fields 101(1), 89–132 (1995)

    MATH  Google Scholar 

  28. Li, P., Schoen, R.: Lp and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153, 279–301 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Lu, S.-L., Yau, H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156(2), 399–433 (1993)

    MATH  Google Scholar 

  30. Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Commun. Math. Phys. 161(3), 447–486 (1994); II. The general case. ibid., 487–514

    MATH  Google Scholar 

  31. Ramirez, A.F.: Relative entropy and mixing properties of infinite dimensional diffusions. Probab. Theor. Relat. Fields 110, 369–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stroock, D.W., Zegarliński, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys. 144(2), 303–323 (1992)

    MATH  Google Scholar 

  33. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149(1), 175–193 (1992)

    MATH  Google Scholar 

  34. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal. 104(2), 299–326 (1992)

    MATH  Google Scholar 

  35. Stroock, D.W., Zegarliński, B.: On the ergodic properties of Glauber dynamics. J. Stat. Phys. 81(5–6), 1007–1019 (1995)

    Google Scholar 

  36. Yoshida, N.: The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. H. Poincaré Probab. Stat. 37(2), 223–243 (2001)

    Article  MATH  Google Scholar 

  37. Zegarliński, B.: Dobrushin uniqueness theorem and logarithmic Sobolev inequalities. J. Funct. Anal. 105(1), 77–111 (1992)

    Google Scholar 

  38. Zegarliński, B.: The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Commun. Math. Phys. 175(2), 401–432 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogachev, V., Röckner, M. & Wang, FY. Invariance Implies Gibbsian: Some New Results. Commun. Math. Phys. 248, 335–355 (2004). https://doi.org/10.1007/s00220-004-1096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1096-5

Keywords

Navigation