Abstract
We investigate stationary distributions of stochastic gradient systems in Riemannian manifolds and prove that, under certain assumptions, such distributions are symmetric. These results are extended to countable products of finite dimensional manifolds and applied to Gibbs distributions in the case where the single spin spaces are Riemannian manifolds. In particular, we obtain a new result concerning the question whether all invariant measures are Gibbsian. Actually, we consider a more general object: weak elliptic equations for measures, which, on the one hand, yields the results obtained stronger than the above mentioned statements, and, on the other hand, enables us to give simpler proofs of more general than previously known facts. Applications to concrete models of lattice systems over ℤ d with not necessarily compact spin space are presented (also in the case d ≥ 3 under certain assumptions of decay of interaction).
Similar content being viewed by others
References
Albeverio, S., Kondratiev, Yu., G., Röckner, M.: Ergodicity of L2-semigroups and extremality of Gibbs measures. J. Funct. Anal. 144, 394–423 (1997)
Albeverio, S., Kondratiev, Yu.G., Röckner, M., Tsykalenko, T.: A priori estimates on symmetrizing measures and their applications to Gibbs states. J. Funct. Anal. 171, 366–400 (2000)
Bellissard, J., Høegh-Krohn, R.: Compactness and the maximal Gibbs states for random Gibbs fields on a lattice. Commun. Math. Phys. 84, 297–327 (1982)
Albeverio, S., Bogachev, V.I., Röckner, M.: On uniqueness of invariant measures for finite and infinite dimensional diffusions. Commun. Pure Appl. Math. 52, 325–362 (1999)
Bodineau, T., Helffer, B.: The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166(1), 168–178 (1999)
Bogachev, V.I., Krylov, N.V., Röckner, M.: Regularity of invariant measures: the case of non-constant diffusion part. J. Funct. Anal. 138, 223–242 (1996)
Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic regularity and essential self-adjointness of Dirichlet operators on ℝn. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(3), 451–461 (1997)
Bogachev, V.I., Krylov, N.V., Röckner, M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Diff. Eq. 26, 11–12 (2001)
Bogachev, V.I., Röckner, M.: Regularity of invariant measures on finite and infinite dimensional spaces and applications. J. Funct. Anal. 133, 168–223 (1995)
Bogachev, V.I., Röckner, M.: A generalization of Hasminskii’s theorem on existence of invariant measures for locally integrable drifts. Theor. Probab. Appl. 45, 417–436 (2000)
Bogachev, V.I., Röckner, M.: Elliptic equations for measures on infinite dimensional spaces and applications. Probab. Theor. Relat. Fields 120, 445–496 (2001)
Bogachev, V.I., Röckner, M., Stannat, W.: Uniqueness of invariant measures and essential maximal dissipativity of diffusion operators on~L1. In: Proceedings of the Colloquium ‘‘Infinite Dimensional Stochastic Analysis’’ (11–12 February 1999, Amsterdam), Clément et als., (eds.), Amsterdam: Royal Netherlands Academy, 2000, pp. 39–54
Bogachev, V.I., Röckner, M., Stannat, W.: Uniqueness of solutions to elliptic equations and uniqueness of invariant measures of diffusions. Sbornik Math. 193(7), 945–976 (2002)
Bogachev, V.I., Röckner, M., Wang, F.-Y.: Elliptic equations for invariant measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80, 177–221 (2001)
Carlen, E.A., Stroock, D.W.: An application of the Bakry–Emery criterion to infinite-dimensional diffusions. Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math. 1204, Berlin: Springer, 1986, pp. 341–348
Chung, L.O.: Existence of harmonic L1 functions in complete Riemannian manifolds. Proc. Am. Math. Soc. 88, 531–532 (1983)
Deuschel, J.-D., Stroock, D.W.: Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models. J. Funct. Anal. 92(1), 30–48 (1990)
Fritz, J.: Stationary measures of stochastic gradient systems, infinite lattice models. Z. Wahr. theor. verw. Geb. 59, 479–490 (1982)
Fritz, J.: On the stationary measures of anharmonic systems in the presence of a small thermal noise. J. Stat. Phys. 44(1–2), 25–47 (1986)
Fritz, J., Liverani, C., Olla, S.: Reversibility in infinite Hamiltonian systems with conservative noise. Commun. Math. Phys. 189(2), 481–496 (1997)
Fritz, J., Roelly, S., Zessin, H.: Stationary states of interacting Brownian motions. Studia Sci. Math. Hungar. 34(1–3), 151–164 (1998)
Georgii H.-O.: Gibbs measures and phase transitions. Berlin: de Gruyter, 1988
Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36(2), 135–249 (1999)
Holley, R., Stroock, D.W.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys. 55, 37–45 (1977)
Holley, R., Stroock, D.W.: Diffusions on an infinite-dimensional torus. J. Funct. Anal. 42(1), 29–63 (1981)
Kolmogoroff, A.N.: Zur Umkehrbarkeit der statistischen Naturgesetze. Math. Ann. 113, 766–772 (1937)
Laroche, E.: Hypercontractivité pour des systémes de spins de portée infinie. Probab. Theory Relat. Fields 101(1), 89–132 (1995)
Li, P., Schoen, R.: Lp and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153, 279–301 (1984)
Lu, S.-L., Yau, H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156(2), 399–433 (1993)
Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Commun. Math. Phys. 161(3), 447–486 (1994); II. The general case. ibid., 487–514
Ramirez, A.F.: Relative entropy and mixing properties of infinite dimensional diffusions. Probab. Theor. Relat. Fields 110, 369–395 (1998)
Stroock, D.W., Zegarliński, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys. 144(2), 303–323 (1992)
Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149(1), 175–193 (1992)
Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal. 104(2), 299–326 (1992)
Stroock, D.W., Zegarliński, B.: On the ergodic properties of Glauber dynamics. J. Stat. Phys. 81(5–6), 1007–1019 (1995)
Yoshida, N.: The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. H. Poincaré Probab. Stat. 37(2), 223–243 (2001)
Zegarliński, B.: Dobrushin uniqueness theorem and logarithmic Sobolev inequalities. J. Funct. Anal. 105(1), 77–111 (1992)
Zegarliński, B.: The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Commun. Math. Phys. 175(2), 401–432 (1996)
Author information
Authors and Affiliations
Additional information
Communicated by J.L. Lebowitz
Rights and permissions
About this article
Cite this article
Bogachev, V., Röckner, M. & Wang, FY. Invariance Implies Gibbsian: Some New Results. Commun. Math. Phys. 248, 335–355 (2004). https://doi.org/10.1007/s00220-004-1096-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-004-1096-5