Communications in Mathematical Physics

, Volume 250, Issue 2, pp 371–391 | Cite as

Randomizing Quantum States: Constructions and Applications

  • Patrick Hayden
  • Debbie Leung
  • Peter W. Shor
  • Andreas Winter
Article

Abstract

The construction of a perfectly secure private quantum channel in dimension d is known to require 2 log d shared random key bits between the sender and receiver. We show that if only near-perfect security is required, the size of the key can be reduced by a factor of two. More specifically, we show that there exists a set of roughly d log d unitary operators whose average effect on every input pure state is almost perfectly randomizing, as compared to the d2 operators required to randomize perfectly. Aside from the private quantum channel, variations of this construction can be applied to many other tasks in quantum information processing. We show, for instance, that it can be used to construct LOCC data hiding schemes for bits and qubits that are much more efficient than any others known, allowing roughly  log d qubits to be hidden in 2 log d qubits. The method can also be used to exhibit the existence of quantum states with locked classical correlations, an arbitrarily large amplification of the correlation being accomplished by sending a negligibly small classical key. Our construction also provides the basic building block for a method of remotely preparing arbitrary d-dimensional pure quantum states using approximately  log d bits of communication and  log d ebits of entanglement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braunstein, S., Lo, H.-K., Spiller, T.: Forgetting qubits is hot to do. Unpublished manuscript, 1999Google Scholar
  2. 2.
    Boykin, P. O., Roychowdhury, V.: Optimal encryption of quantum bits. http://arxiv.org/abs/quant-ph/0003059, 2000
  3. 3.
    Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pp. 547–553Google Scholar
  4. 4.
    Bennett, C. H., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)CrossRefMATHGoogle Scholar
  5. 5.
    Eggeling, T., Werner, R. F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)CrossRefGoogle Scholar
  6. 6.
    DiVincenzo, D. P., Hayden, P., Terhal, B. M.: Hiding quantum data. Found. Phys. 33(11), 1629–1647 (2003)CrossRefGoogle Scholar
  7. 7.
    DiVincenzo, D.P., Leung, D. W., Terhal, B. M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    DiVincenzo, D. P., Horodecki, M., Leung, D., Smolin, J., Terhal, B. M.: Locking classical correlation in quantum states. Phys. Rev. Lett. 92, 067902 (2004)CrossRefGoogle Scholar
  9. 9.
    Bennett, C. H., Hayden, P., Leung, D., Shor, P. W., Winter, A.: Remote preparation of quantum states. http://arxiv.org/abs/quant-ph/0307100, 2003
  10. 10.
    Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)CrossRefGoogle Scholar
  12. 12.
    Leung, D.: Quantum vernam cipher. Quantum Info. Comp. 2, 14–34 (2001)MATHGoogle Scholar
  13. 13.
    Leung, D., Shor, P.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)CrossRefGoogle Scholar
  14. 14.
    Holevo, A. S.: Statistical problems in quantum physics. In: G. Maruyama J. V. Prokhorov, editors, Proceedings of the second Japan-USSR Symposium on Probability Theory, Volume 330 of Lecture Notes in Mathematics, Berlin: Springer-Verlag, 1973, pp. 104–119Google Scholar
  15. 15.
    Dembo, A., Zeitouni, O.: Large deviations techniques and applications. New York: Springer-Verlag, 1993Google Scholar
  16. 16.
    Zyczkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33, 2045–2057 (2000)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Bennett, C. H., DiVincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., Smolin, J. A., Wootters, W. K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999)CrossRefGoogle Scholar
  18. 18.
    Hayden, P.: Spin-cycle entanglement. In preparationGoogle Scholar
  19. 19.
    Verstraete, F., Cirac, J. I.: Quantum nonlocality in the presence of superselection rules and data hiding protocols. Phys. Rev. Lett. 91, 10404 (2003)CrossRefGoogle Scholar
  20. 20.
    Ohya, M., Petz, D.: Quantum entropy and its use. Texts and monographs in physics. Berlin: Springer-Verlag, 1993Google Scholar
  21. 21.
    Hausladen, P., Wootters, W. K.: A pretty good measurement for distinguishing quantum states. J. Mod. Opt. 41, 2385–2390 (1994)MathSciNetMATHGoogle Scholar
  22. 22.
    Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W. K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Fuchs, C. A., van de Graaf, J.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Theory 45, 1216–1227 (1999)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Maasen, H., Uffink, I.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)CrossRefGoogle Scholar
  26. 26.
    Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Fannes, M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291–294 (1973)Google Scholar
  28. 28.
    Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Number 1200 in Lecture Notes in Mathematics. Springer-Verlag, 1986Google Scholar
  29. 29.
    Jozsa, R., Robb, D., Wootters, W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49(2), 668–677 (1994)CrossRefGoogle Scholar
  30. 30.
    Young, R. M.: Euler’s constant. Math. Gaz. 75, 187–190 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick Hayden
    • 1
    • 2
  • Debbie Leung
    • 2
  • Peter W. Shor
    • 3
  • Andreas Winter
    • 4
    • 2
  1. 1.Institute for Quantum InformationCaltech 107–81PasadenaUSA
  2. 2.Mathematical SciencesResearch InstituteBerkeleyUSA
  3. 3.AT & T Labs ResearchFlorham ParkUSA
  4. 4.Department of Computer ScienceUniversity of BristolBristolUnited Kingdom

Personalised recommendations