Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. A 59, 381–384 (1987)
ADS
MathSciNet
Google Scholar
Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)
Article
ADS
MathSciNet
Google Scholar
Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29, 1–65 (2001)
MATH
MathSciNet
Google Scholar
Dhar, D., Ramaswamy, R.: Exactly solved model of self-organized critical phenomena. Phys. Rev. Lett. 63, 1659–1662 (1989)
Article
ADS
MathSciNet
Google Scholar
Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)
ADS
MATH
MathSciNet
Google Scholar
Dhar, D.: The Abelian sandpile and related models. Phys. A 263, 4–25 (1999)
Google Scholar
Dhar, D.: Studying Self-organized criticality with exactly solved models. Preprint (1999) http://arXiv.org/abs/cond-mat/9909009
Dhar, D., Majumdar, S.N.: Abelian sandpile models on the Bethe lattice. J. Phys. A 23, 4333–4350 (1990)
Article
ADS
MathSciNet
Google Scholar
Ivashkevich, E.V., Priezzhev, V.B.: Introduction to the sandpile model. Phys. A 254, 97–116 (1998)
Google Scholar
Járai, A.A., Redig, F.: Infinite volume limits of high-dimensional sandpile models. In preparation
Jensen, H.J.: Self-organized criticality. Emergent complex behavior in physical and biological systems. Cambridge Lecture Notes in Physics, 10, Cambridge: Cambridge University Press, 2000
Lawler, G.F.: Intersections of random walks. Basel-Boston: Birkhäuser, softcover edition (1996)
Loève, M.: Probability theory I–II. Graduate Texts in Mathematics, 45–46, Berlin-Heidelberg-New York: Springer-Verlag, 4th edition 1977
Maes, C., Redig, F., Saada, E.: The Abelian sandpile model on an infinite tree. Ann. Probab. 30, 2081–2107 (2002)
MATH
MathSciNet
Google Scholar
Maes, C., Redig, F., Saada, E.: The infinite volume limit of dissipative abelian sandpiles. Commun. Math. Phys. 244, 395–417 (2004)
ADS
MATH
MathSciNet
Google Scholar
Maes, C., Redig, F., Saada, E., Van Moffaert, A.: On the thermodynamic limit for a one-dimensional sandpile process. Markov Process. Related Fields 6, 1–22 (2000)
MATH
MathSciNet
Google Scholar
Mahieu, S., Ruelle, P.: Scaling fields in the two-dimensional Abelian sandpile model. Phys. Rev. E 64, 066130 (2001)
Article
ADS
Google Scholar
Majumdar, S.N., Dhar, D.: Height correlations in the Abelian sandpile model. J. Phys. A 24, L357–L362 (1991)
Google Scholar
Majumdar, S.N., Dhar, D.: Equivalence between the Abelian sandpile model and the q → 0 limit of the Potts model. Physica A
185, 129–145 (1992)
Article
ADS
Google Scholar
Meester, R., Redig, F. and Znamenski, D.: The Abelian sandpile; a mathematical introduction. Markov Proccess. Related Fields 7, 509–523 (2002)
ADS
MathSciNet
Google Scholar
Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19, 1559–1574 (1991)
MATH
MathSciNet
Google Scholar
Priezzhev, V.B.: Structure of two-dimensional sandpile. I. Height Probabilities. J. Stat. Phys. 74, 955–979 (1994)
Google Scholar
Priezzhev, V.B.: The upper critical dimension of the Abelian sandpile model. J. Stat. Phys. 98, 667–684 (2000)
Article
MATH
MathSciNet
Google Scholar
Tebaldi, C., De Menech, M., Stella, A.L.: Multifractal scaling in the Bak-Tang-Wiesenfeld sandpile and edge events. Phys. Rev. Letters 83, 3952–3955 (1999)
Article
ADS
Google Scholar
Vespignani, A., Zapperi S.: How Self-organised criticality works: A unified mean-field picture. Phys. Rev. A 57, 6345–6361 (1988)
MathSciNet
Google Scholar
Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eighth ACM Symposium on the Theory of Computing, New York: ACM, pp. 296–303 (1996)