Asselah, A., Castell, F.: Quenched large deviations for diffusions in a random gaussian shear flow drift. ArXiv math-PR/0202291, 2002
Avellaneda, M., Majda, A.: Homogenization and renormalization of multiple-scattering expansions for green functions in turbulent transport. In: Composite Media and Homogenization Theory, Volume 5 of Progress in Nonlinear Differential Equations and Their Applications 1987, pp. 13–35
Avellaneda, M., Majda, A.: Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 131, 381–429 (1990)
MathSciNet
MATH
Google Scholar
Avellaneda, M., Majda, A.J.: An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun. Math. Phys. 138, 339–391 (1991)
MathSciNet
MATH
Google Scholar
Avellaneda, M.: Homogenization and renormalization, the mathematics of multi-scale random media and turbulent diffusion. In: Lectures in Applied Mathematics, Volume 31, 1996, pp. 251–268
Rabi Bhattacharya: Multiscale diffusion processes with periodic coefficients and an application to solute transport in porous media. The Annals of Appl. Probab.
9(4), 951–1020 (1999)
Google Scholar
Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic analysis for periodic structure. Amsterdam, North Holland, 1978
Gérard, Ben Arous, Houman, Owhadi: Multi-scale homogenization with bounded ratios and anomalous slow diffusion. Commun. Pure and App. Math. XV, 1–34 (2002)
Gérard, Ben Arous, Houman, Owhadi: Super-diffusivity in a shear flow model from perpetual homogenization. Commun. Math. Phys. 227(2), 281–302 (2002)
Article
Google Scholar
Childress, S.: Alpha-effect in flux ropes and sheets. Phys. Earth Planet Intern. 20, 172–180 (1979)
Article
Google Scholar
Castell, F., Pradeilles, F.: Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process. Appl.
94(2), 171–197 (2001)
Article
Google Scholar
Dimotakis, P. E., Catrakis, H. J.: Turbulence, fractals, and mixing. Technical report, NATO Advanced Studies Institute series, Mixing: Chaos and Turbulence (7-20 July 1996, Corsica, France), 1997. Available as GALCIT Report FM97-1
Fannjiang, A.: Richardson’s laws for relative dispersion in colored-noise flows with kolmogorov-type spectra. ArXiv math-ph/0209007, 2002
Furtado, F., Glimm,J., Lindquist, B., Pereira, F., Zhang, Q.: Time dependent anomalous diffusion for flow in multi-fractal porous media. In: T.M.M. Verheggan, (ed.) Proceeding of the workshop on numerical methods for simulation of multiphase and complex flow, New York: Springer Verlag, 1991, pp. 251–259
Fannjiang, A., Komorowski, T.: Fractional brownian motion limit for motions in turbulence. Ann. of Appl. Prob. 10(4), (2001)
Fannjiang, A., Papanicolaou, G.C.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)
MathSciNet
MATH
Google Scholar
Gaudron, G.: Scaling laws and convergence for the advection-diffusion equation. Ann. of Appl. Prob. 8, 649–663 (1998)
Article
MathSciNet
MATH
Google Scholar
Gawedzki, K., Kupiainen, A.: Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834–3837 (1998)
Article
Google Scholar
Glimm, J., Lindquist, B., Pereira, F., Peierls, R.: The multi-fractal hypothesis and anomalous diffusion. Mat. Apl. Comput. 11(2), 189–207 (1992)
Google Scholar
Glimm, J., Zhang, Q.: Inertial range scaling of laminar shear flow as a model of turbulent transport. Commun. Math. Phys. 146, 217–229 (1992)
MathSciNet
MATH
Google Scholar
Isichenko, M.B., Kalda, J.: Statistical topography. ii. two-dimensional transport of a passive scalar. J. Nonlinear Sci. 1, 375–396 (1991)
MATH
Google Scholar
Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Berlin-Heidelberg-New York: Springer-Verlag, 1991
Komorowski, T., Olla, S.: On the superdiffusive behavior of passive tracer with a gaussian drift. Journ. Stat. Phys. 108, 647–668 (2002)
Article
MathSciNet
MATH
Google Scholar
Kesten, H., Spitzer, F.: A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50(1), 5–25 (1979)
MATH
Google Scholar
Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd ed., Moscow: MIR, 1984
Meyers, N. G.: An l
p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scula Norm. Sup. Pisa 17, 189–206 (1963)
MATH
Google Scholar
Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999). Available at http://www.elsevier.nl/locate/physrep
Article
MathSciNet
Google Scholar
Norris, J.R.: Long-time behaviour of heat flow: Global estimates and exact asymptotics. Arch. Rat. Mech. Anal. 140, 161–195 (1997)
Article
MathSciNet
MATH
Google Scholar
Owhadi, H.: Anomalous diffusion and homogenization on an infinite number of scales. PhD thesis, EPFL – Swiss Federal Institute of Technology, 2001. Available at http://www.cmi.univ-mrs.fr/∼owhadi/
Houman, Owhadi: Anomalous slow diffusion from perpetual homogenization. Submitted, 2001. Preprint available at http://www.cmi.univ-mrs.fr/∼ owhadi/
Piterbarg, L.: Short-correlation approximation in models of turbulent diffusion. In: Stochastic models in geosystems (Minneapolis, MN, 1994), Volume 85, of IMA Vol. Math. Appl., New York: Springer, 1997, pp. 313–352
Simander, C.G.: On Dirichlet’s boundary value problem. Berlin-Heidelberg-New York: Springer-Verlag, 1972
Stampacchia, G.: Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(1), 189–258 (1965)
Google Scholar
Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montréal Canada: Les Presses de l’Université de Montréal, 1966
Woyczynski, W. A.: Passive tracer transport in stochastic flows. In: Stochastic Climate Models, Boston Birkhäuser-Boston, 2000, p. 16
Zhang, Q.: A multi-scale theory of the anomalous mixing length growth for tracer flow in heterogeneous porous media. J. Stat. Phys. 505, 485–501 (1992)
MATH
Google Scholar