Skip to main content
Log in

Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce an elementary energy method for the Boltzmann equation based on a decomposition of the equation into macroscopic and microscopic components. The decomposition is useful for the study of time-asymptotic stability of nonlinear waves. The wave location is determined by the macroscopic equation. The microscopic component has an equilibrating property. The coupling of macroscopic and microscopic components gives rise naturally to the dissipations similar to those obtained by the Chapman-Enskog expansion. Our main result is the establishment of the positivity of shock profiles for the Boltzmann equation. This is shown by the time-asymptotic approach and the maximal principle for the collision operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Caflisch, R. E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas, Commun. Pure Appl. Math. 49, 323–352 (1986)

    MathSciNet  Google Scholar 

  2. Ludwig Boltzmann: (Translated by Stephen G. Brush): Lectures on Gas Theory. New York: Dover Publications, Inc. 1964

  3. Caflish, R. E., Nicolaenko, B.: Shock Profile Solutions of the Boltzmann Equation, Commun. Math. Phys. 86, 161–194 (1982)

    Google Scholar 

  4. Carleman, T.: Sur La Théorie de l’Équation Intégrodifférentielle de Boltzmann. Acta Mathematica 60, 91–142

    MATH  Google Scholar 

  5. Chapman, S., Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge University Press, 1990, 3rd edition

    Google Scholar 

  6. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95(4), 325–344 (1986)

    MATH  Google Scholar 

  7. Grad, H.: Asymptotic Theory of the Boltzmann Equation. In: Rarefied Gas Dynamics, J. A. Laurmann, ed., Vol. 1, New York: Academic Press, pp. 26–59 1963

  8. Hilbert, D.: Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen. Leipzig: Teubner, Chap. 22

  9. Kawashima, S.: Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh Sect. A 106(1–2), 169–194 (1987)

  10. Kawashima, S., Matsumura, A., Nishida, T.: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Commun. Math. Phys. 70(2), 97–124 (1979)

    MATH  Google Scholar 

  11. Kawashima, S., Matsumura, A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101(1), 97–127 (1985)

    MATH  Google Scholar 

  12. Liu, T.-P.: Nonlinear Stability of Shock Waves for Viscous Conservation Laws. Mem. Amer. Math. Soc. 56, 329 (1985)

    Google Scholar 

  13. Liu, T.-P.: Pointwise Convergence to Shock Waves for Viscous Conservation Laws. Commun. Pure and Appl. Math. Vol. 11, 1113–1182 (1997)

    Article  MATH  Google Scholar 

  14. Maxwell, J. C.: The Scientific Papers of James Clerk Maxwell. Cambridge: Cambridge University University Press, 1990: (a) On the Dynamical Theory of Gases, Vol. II, p. 26. (b) On Stresses in Rarefied Gases Arising from Inequalities of Temperature, Vol. p.681

  15. Nishida, T.: Takaaki Fluid Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61(2), 119–148 (1978)

    MATH  Google Scholar 

  16. Matsumura, A., Nishihara, K.: On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2(1), 17–25 (1985)

    MATH  Google Scholar 

  17. Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)

    MATH  Google Scholar 

  18. Ukai, S.: Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace. C.R.Acad. Sci. Paris Ser. A-B 282(6), Ai, A317–A320 (1976)

  19. Ukai, S., Yang, T., Yu, S.-H.: Existence and Stability of A SuperSonic Boundary Layer for Boltzmann Equation. To appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Ping Liu.

Additional information

Communicated by P. Sarnak

The research of the first author was supported by the Institute of Mathematics, Academia Sinica, Taipei and NSC #91-2115-M-001-004. The research of the second author was supported by the SRG of City University of Hong Kong Grant #7001426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, TP., Yu, SH. Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles. Commun. Math. Phys. 246, 133–179 (2004). https://doi.org/10.1007/s00220-003-1030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-1030-2

Keywords

Navigation