Skip to main content
Log in

The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of perturbative quantum field theory a new, universal renormalization condition (called Master Ward Identity) was recently proposed by one of us (M.D.) in a joint paper with F.-M. Boas. The main aim of the present paper is to get a better understanding of the Master Ward Identity by analyzing its meaning in classical field theory. It turns out that it is the most general identity for classical local fields which follows from the field equations. It is equivalent to a generalization of the Schwinger-Dyson Equation and is closely related to the Quantum Action Principle of Lowenstein and Lam. As a byproduct we give a self-contained treatment of Peierls’ manifestly covariant definition of the Poisson bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975); Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. (N.Y.) 98, 287 (1976)

    Google Scholar 

  2. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. New York, 1959

  3. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeWitt, B.S.: The spacetime approach to quantum field theory. In: Relativity, Groups, and Topology II: Les Houches 1983, B.S. DeWitt and R. Stora, (eds.), Part 2, New York: North-Holland, 1984, pp. 381–738

  5. Dütsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: The example of QED. Commun. Math. Phys. 203, 71 (1999); Dütsch, M., and Fredenhagen, K.: Deformation stability of BRST-quantization. Preprint: hep-th/9807215, DESY 98-098, Proceedings of the conference ‘Particles, Fields and Gravitation’, Lodz, Poland, 1998

    Article  Google Scholar 

  6. Dütsch, M., Fredenhagen, K.: Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion. Commun. Math. Phys. 219, 5 (2001); Dütsch, M., Fredenhagen, K.: Perturbative Algebraic Field Theory, and Deformation Quantization. Fields Inst. Commun. 30, 151 (2001), hep-th/0101079

    MathSciNet  Google Scholar 

  7. Dütsch, M., Boas, F.-M.: The Master Ward Identity. Rev. Math. Phys 14, 977–1049 (2002)

    Article  MathSciNet  Google Scholar 

  8. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a local formulation of the renormalization group. Work in progress

  9. Dütsch, M., Hurth, T., Krahe, K., Scharf, G.: Causal construction of Yang-Mills theories. I. N. Cimento A 106, 1029 (1993); Dütsch, M., Hurth, T., Krahe, K., Scharf, G.: Causal construction of Yang-Mills theories. II. N. Cimento A 107, 375 (1994)

    MathSciNet  Google Scholar 

  10. Dütsch, M., Scharf, G.: Perturbative Gauge Invariance: The Electroweak Theory. Ann. Phys. (Leipzig), 8, (1999) 359; Aste, A., Dütsch, M., Scharf, G.: Perturbative Gauge Invariance: The Electroweak Theory II. Ann. Phys. (Leipzig), 8 (1999) 389

  11. Dütsch, M., Schroer, B.: Massive Vector Mesons and Gauge Theory. J. Phys. A 33, 4317 (2000)

    MathSciNet  Google Scholar 

  12. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211 (1973)

    Google Scholar 

  13. Glaser, V., Lehmann, H., Zimmermann, W.: Field Operators and Retarded Functions. Nuovo Cimen. 6, 1122 (1957)

    MATH  Google Scholar 

  14. Grigore, D.R.: On the uniqueness of the nonabelian gauge theories in Epstein-Glaser approach to renormalisation theory. Romanian J. Phys. 44, 853 (1999), hep-th/9806244

    MathSciNet  Google Scholar 

  15. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton, NJ: Princeton University Press, 1992

  16. Hollands, S., Wald, R. M.: Local Wick Polynomials and Time-Ordered-Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys. 223, (2001) 289; Hollands, S., Wald, R. M.: Existence of Local Covariant Time-Ordered-Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys., (2002)

  17. Hurth, T., Skenderis, K.: The quantum Noether condition in terms of interacting fields. In: New Developments in Quantum Field Theory, P. Breitenlohner, D. Maison, J.Wess, (eds.), Lect. Notes Phys. 558, Berlin-Heidelberg-New York: Springer, 2000, p. 86

  18. Kugo, T., Ojima, I.: Local covariant operator formalism of nonabelian gauge theories and quark confinement problem. Suppl. Progr. Theor. Phys. 66, 1 (1979)

    Google Scholar 

  19. Lam, Y.-M.P.: Perturbation Lagrangian Theory for Scalar Fields - Ward-Takahashi Identity and Current Algebra. Phys. Rev. D6, 2145 (1972)

  20. Lam, Y.-M.P.: Equivalence Theorem on Bogoliubov-Parasiuk-Hepp-Zimmermann - Renormalized Lagrangian Field Theories. Phys. Rev. D7, 2943 (1973)

  21. Lowenstein, J.H.: Differential vertex operations in Lagrangian field theory. Commun. Math. Phys. 24, 1 (1971)

    MATH  Google Scholar 

  22. Lowenstein, J.H.: Normal-Product Quantization of Currents in Lagrangian Field Theory. Phys. Rev. D 4, 2281 (1971)

    Article  Google Scholar 

  23. Marolf, D.M.: The Generalized Peierls Bracket. Ann. Phys. (N.Y.) 236, 392 (1994)

    Article  MATH  Google Scholar 

  24. Nakanishi, N.: Prog. Theor. Phys. 35, 1111 (1966); Lautrup, B.: Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 35 (11), 1 (1967)

    Google Scholar 

  25. Lehmann, H., Symanzik, K., Zimmermann, W.: On the formulation of quantized field theories II. Nuovo Cimen. 6, 319 (1957)

    MathSciNet  MATH  Google Scholar 

  26. Peierls, R.: The commutation laws of relativistic field theory. Proc. Roy. Soc. (London) A 214, 143 (1952)

    MathSciNet  MATH  Google Scholar 

  27. Piguet, O., Sorella, S.: Algebraic renormalization: Perturbative renormalization, symmetries and anomalies. Berlin: Springer, Lecture notes in Physics, 1995

  28. Pinter, G.: Finite Renormalizations in the Epstein-Glaser Framework and Renormalization of the S-Matrix of φ4-Theory. Ann. Phys. (Leipzig) 10, 333 (2001)

    Article  MATH  Google Scholar 

  29. Scharf, G.: Quantum Gauge Theories - A True Ghost Story. New York: John Wiley and Sons, 2001

  30. Steinmann, O.: Perturbation expansions in axiomatic field theory. Lecture Notes in Physics 11, Berlin-Heidelberg-New York: Springer-Verlag, 1971

  31. Stora, R.: Local gauge groups in quantum field theory: Perturbative gauge theories. Talk given at the workshop ‘Local Quantum Physics’ at the Erwin-Schroedinger-Institute, Vienna, 1997

  32. Stora, R.: Pedagogical Experiments in Renormalized Perturbation Theory. Contribution to the conference ‘Theory of Renormalization and Regularization’, Hesselberg, Germany (2002), http://www.thep.physik.uni-mainz.de/~scheck/Hessbg02.html; and private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dütsch.

Additional information

Communicated by J.Z. Imbrie

Work supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dütsch, M., Fredenhagen, K. The Master Ward Identity and Generalized Schwinger-Dyson Equation in Classical Field Theory. Commun. Math. Phys. 243, 275–314 (2003). https://doi.org/10.1007/s00220-003-0968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0968-4

Keywords

Navigation