Abstract
We prove uniqueness of solutions to the Maxwell-Dirac system in the energy space, namely . We also give a proof for uniqueness of finite energy solutions to the Maxwell-Klein-Gordon equations, which is simpler than that given in [16].
Similar content being viewed by others
References
Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren Math. Wiss. 223, Berlin-Heidelberg-New York: Springer, 1976
Bournaveas, N.: Local existence for the Maxwell-Dirac equations in three space dimensions. Commun. Partial Diff. Eqs. 21(5–6), 693–720 (1996)
Bournaveas, N.: Local existence of energy class solutions for the Dirac-Klein-Gordon equations. Comm. Partial Differ. Eqs. 24(7–8), 1167–1193 (1999)
Cuccagna, S.: On the local existence for the Maxwell-Klein-Gordon system in R 3+1. Comm. Partial Differ. Eqs. 24(5–6), 851–867 (1999)
Dirac, P.A.M.: Principles of Quantum Mechanics. 4th ed., London: Oxford University Press, 1958
Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell-Dirac and the Klein- Gordon-Dirac equations, Calc. Var. 4, 265–281 (1996)
Furioli, G., Lemarié-Rieusset, P.G., Terraneo, E.: Unicité dans L 3(ℝ3) et d’autres espaces fonctionnels limites pour Navier-Stokes. Rev. Mat. Iberoamericana 16(3), 605–667 (2000)
Klainerman, S., Machedon, M.: On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J. 74(1), 19–44 (1994)
Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46(9), 1221–1268 (1993)
Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Internat. Math. Res. Notices 9, 383–390 (1994)
Lions, P.L., Masmoudi, N.: Uniqueness of mild solutions of the Navier-Stokes system in L N. Comm. Partial Differ. Eqs. 26(11-12), 2211–2226 (2001)
Masmoudi, N., Mauser, N.: The selfconsistent Pauli equation and its semiclassical/nonrelativistic limits. Monatsh. Math. 132(1), 19–24 (2001)
Masmoudi, N., Nakanishi, K.: Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger. In. Math. Res. No. 13, 697–734 (2003)
Planchon, F.: On uniqueness for semilinear wave equations. To appear in Math. Z.
Tataru, D.: The X s θ spaces and unique continuation for solutions to the semilinear wave equation. Comm. Partial Differ. Eqs. 21(5-6), 841–887 (1996)
Zhou, Y.: Uniqueness of generalized solutions to nonlinear wave equations. Am. J. Math. 122(5), 939–965 (2000)
Author information
Authors and Affiliations
Additional information
Communicated by H.-T. Yau
The first author is partially supported by an NSF grant and an Alfred Sloan fellowship. The second author is supported by JSPS Postdoctoral Fellowships for Research Abroad (2001–2003)
Rights and permissions
About this article
Cite this article
Masmoudi, N., Nakanishi, K. Uniqueness of Finite Energy Solutions for Maxwell-Dirac and Maxwell-Klein-Gordon Equations. Commun. Math. Phys. 243, 123–136 (2003). https://doi.org/10.1007/s00220-003-0951-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-003-0951-0