Skip to main content
Log in

Spectral Curve, Darboux Coordinates and Hamiltonian Structure of Periodic Dressing Chains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A chain of one-dimensional Schrödinger operators connected by successive Darboux transformations is called the ``Darboux chain'' or ``dressing chain''. The periodic dressing chain with period $N$ has a control parameter $\alpha$. If $\alpha \not= 0$, the $N$-periodic dressing chain may be thought of as a generalization of the fourth or fifth (depending on the parity of $N$) Painlevé equations . The $N$-periodic dressing chain has two different Lax representations due to Adler and to Noumi and Yamada. Adler's $2 \times 2$ Lax pair can be used to construct a transition matrix around the periodic lattice. One can thereby define an associated ``spectral curve'' and a set of Darboux coordinates called ``spectral Darboux coordinates''. The equations of motion of the dressing chain can be converted to a Hamiltonian system in these Darboux coordinates. The symplectic structure of this Hamiltonian formalism turns out to be consistent with a Poisson structure previously studied by Veselov, Shabat, Noumi and Yamada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, M.R., Harnad, J., Hurtubise, J.: Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Adler, V.E.: Cutting of polygons. Funct. Anal. Appl. 27, 141–143

    Google Scholar 

  3. Adler, V.E.: Nonlinear chains and Painlevé equations. Phys. D73, 335–351 (1994)

    Google Scholar 

  4. Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. London Math. Soc. Ser. 2(21), 420–440 (1922)

    MATH  Google Scholar 

  5. Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. J. Soviet Math. 30, 1975–2036 (1985)

    MATH  Google Scholar 

  6. Dubrovin, B.A.: Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)

    MATH  Google Scholar 

  7. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Non-linear equations of Korteweg-de Vries type, finite-zone linear operators and Abelian varieties. Russ. Math. Surv. 31(1), 59–146 (1976)

    MATH  Google Scholar 

  8. Flaschka, H., McLaughlin, D.W.: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55, 438–456 (1976)

    MATH  Google Scholar 

  9. Garnier, R.: Sur des équations différentielles du troisième ordre dont l'intégrale est uniform et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale à ses point critiques fixés. Ann. Sci. École Norm. Sup. 29(3), 1–126 (1912)

    MATH  Google Scholar 

  10. Harnad, J.: Dual isomonodromic deformations and moment maps to loop algebras. Commun. Math. Phys. 166, 337–365 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Harnad, J., Wisse, M.A.: Loop algebra moment maps and Hamiltonian models for the Painlevé transcendents. AMS-Fields Inst. Commun. 7, 155–169 (1996)

    MATH  Google Scholar 

  12. Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv. 32(6), 185–214 (1977)

    MATH  Google Scholar 

  13. Lax, P.D.: Periodic solutions of Korteweg-de Vries equation. Comm. Pure. Appl. Math. 28, 141–188 (1975)

    MATH  Google Scholar 

  14. McKean, M.P., van Moerbeke, P.: The spectrum of Hill's equation. Invent. Math. 30, 217–274 (1975)

    MATH  Google Scholar 

  15. Moore, G.: Geometry of the string equations. Commun. Math. Phys. 133, 261–304 (1990); Matrix models of 2D gravity and isomonodromic deformations. Prog. Theor. Phys. Suppl. 102, 255–285 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Moser, J.: Geometry of quadrics and spectral theory. In: W.-Y. Hsiang et al. (eds.), The Chern Symposium 1979, Berlin-Heidelberg-New York: Springer-Verlag, 1980, pp. 147–188

  17. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential – an integrable system. In: J. Moser (ed.), Dynamical Systems, Theory and Applications, Lecture Notes in Physics, Vol. 38, Berlin-Heidelberg-New York: Springer-Verlag, 1975, pp. 467–497

  18. Noumi, M., Yamada, Y.: Higher order Painlevé equations of type A (1) . Funkcial. Ekvac. 41, 483–503 (1998)

    Google Scholar 

  19. Noumi, M., Yamada, Y.: Affine Weyl group symmetries in Painlevé type equations. In: C.J. Howls, T. Kawai, Y. Takei (eds.), Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto: Kyoto University Press, 2000, pp. 245–259

  20. Noumi, M., Yamada, Y.: A new Lax pair for the sixth Painlevé equation associated with \(\widehat{so(8)}\). arXiv e-print nlin.SI/0203029

  21. Novikov, S.P.: Periodic problem for the Korteweg-de Vries equation I. Funct. Anal. Appl. 8, 236–246 (1974)

    MATH  Google Scholar 

  22. Okamoto, K.: Isomonodromic deformation and Painlevé equation, and the Garnier system. J. Fac. Sci. Univ. Tokyo, Sec. IA, 33, 575–618 (1986)

    Google Scholar 

  23. Shabat, A.B.: The infinite-dimensional dressing dynamical system. Inverse Problems 6, 303–308 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shabat, A.B., Yamilov, R.I.: Symmetries of nonlinear chains. Leningrad Math. J. 2, 377–400 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Sklyanin, E.K.: Separation of variables – new trends. Prog. Theor. Phys. Suppl. 118, 35–60 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Veselov, A.P., Shabat, A.B.: Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Appl. 27, 81–96 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Willox, R., Hietarinta, J.: Painlevé equations from Darboux chains. arXiv preprint nlin.SI/0302012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanehisa Takasaki.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasaki, K. Spectral Curve, Darboux Coordinates and Hamiltonian Structure of Periodic Dressing Chains. Commun. Math. Phys. 241, 111–142 (2003). https://doi.org/10.1007/s00220-003-0929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0929-y

Keywords

Navigation