Skip to main content
Log in

Spectral Triples and Associated Connes-de Rham Complex for the Quantum SU(2) and the Quantum Sphere

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we construct spectral triples for the C *-algebra of continuous functions on the quantum SU(2) group and the quantum sphere. There have been various approaches towards building a calculus on quantum spaces, but there seem to be very few instances of computations outlined in Chapter 6, [5]. We give detailed computations of the associated Connes-de Rham complex and the space of L 2 -forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les C *-modules Hilbertiens. C. R. Acad. Sci., Paris, sér. I Math 296(21), 875–878 (1983)

    Google Scholar 

  2. Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K-Theory 28(2), 107–126 (2003)

    Google Scholar 

  3. Connes, A.: Noncommutative geometry and Physics. In Gravitation et quantifications (Les Houches, 1992), Amsterdam: North-Holland, 1995, pp. 805–950

  4. Connes, A.: On the Chern character of θ summable Fredholm modules. Commun. Math. Phys. 139(1), 171–181 (1991)

    MATH  Google Scholar 

  5. Connes, A.: Noncommutative Geometry. London-New York: Academic Press, 1994

  6. Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2). math.QA/0209142

  7. Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5(2), 174–243 (1995)

    MATH  Google Scholar 

  8. Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric Quantum Theory and Non-Commutative Geometry. Commun. Math. Phys 203, 119–184 (1999)

    Article  Google Scholar 

  9. Podleś, P.: Quantum spheres. Lett. Math. Phys. 14(3), 193–202 (1987)

    Google Scholar 

  10. Rosenberg, J., Schochet, C.L.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J 55(2), 431–474 (1987)

    MATH  Google Scholar 

  11. Sheu, A.J-L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space – the 2-sphere. With an appendix by Jiang-Hua Lu and Alan Weinstein. Commun. Math. Phys. 135(2), 217–232 (1991)

    MATH  Google Scholar 

  12. Voiculescu, D.: Some results on norm-ideal perturbation of Hilbert space operators I. J. Operator Theory 2, 3–37 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. RIMS, Kyoto University 23(1), 117–181 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arupkumar Pal.

Additional information

Communicated by A. Connes

The first author would like to acknowledge support from the National Board for Higher Mathematics, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, P., Pal, A. Spectral Triples and Associated Connes-de Rham Complex for the Quantum SU(2) and the Quantum Sphere. Commun. Math. Phys. 240, 447–456 (2003). https://doi.org/10.1007/s00220-003-0921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0921-6

Keywords

Navigation