Skip to main content
Log in

Antiproton-proton annihilation into two mesons: SU(3) coupling schemes for quark line rule, s-channel dominance and baryon exchange

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

We use SU(3)- and charge conjugation-invariance to analyse the annihilation of a\(\bar pp\) bound state of definiteC-parity into two mesons. We introduce four sets of SU(3) invariant couplings and write down the transformations among them. They allow for a direct interpretation in terms of different physical assumptions. The couplings permit an easy incorporation of the quark line- (or OZI-) rule. The four sets of invariant couplings — even though mathematically equivalent — correspond to different pictures of the annihilation mechanism. One coupling scheme refers to a description of\(\bar pp\) annihilation in terms of baryon exchange. A second scheme specifies the octet decomposition of the s-channel intermediate states. The third scheme traces the flow of quarks from the initial\(\bar pp\) system to the outgoing mesons. And finally, we use the octet coupling scheme. The latter has no obvious interpretation in form of a simple physical picture but is needed to relate the different coupling schemes by transformation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Amsler et al., Phys. Lett.B294(1992)451

    ADS  Google Scholar 

  2. C. Amsler et al., Phys. Lett.B297(1992)214

    ADS  Google Scholar 

  3. C. Amsler et al., Z. PhysikC58(1993)175

    ADS  Google Scholar 

  4. C. Amsler et al., Phys. Lett.B311(1993)371

    ADS  Google Scholar 

  5. C. Amsler et al., Phys. Lett.B319(1993)373

    ADS  Google Scholar 

  6. V. G. Ableev et al., Phys. Lett.B329(1994)407

    ADS  Google Scholar 

  7. V. G. Ableev et al., Phys. Lett.B334(1994)237

    ADS  Google Scholar 

  8. R. Adler et al., Phys. Lett.B267(1991)154

    ADS  Google Scholar 

  9. R. Adler et al., Z. PhysikC65(1995)199

    ADS  Google Scholar 

  10. R. Armenteros and B. French, “Antinucleon-nucleon Interactions”, in: High Energy Physics (ed. R. Burhop)4(1968)237–417

    ADS  Google Scholar 

  11. A. Bettini et al., Nuovo Cimento63A(1969)1199

    Google Scholar 

  12. M. Foster et al., Nucl. Phys.B6(1968)107

    Article  ADS  Google Scholar 

  13. C. Baltay et al., Phys. Rev.145(1966)1103

    Article  ADS  Google Scholar 

  14. R. Bizarri et al., Nucl. Phys.B14(1969)169

    Article  ADS  Google Scholar 

  15. M. Foster et al., Nucl. Phys.B8(1968)174

    Article  ADS  Google Scholar 

  16. A. Bettini et al., Nuovo Cimento63A(1969)1199

    Google Scholar 

  17. J. Diaz et al., Nucl. Phys.B16(1970)239

    Article  ADS  Google Scholar 

  18. J. Bizarri et al., Nucl. Phys.B14(1969)169

    Article  ADS  Google Scholar 

  19. M. Doser et al., Phys. Lett.B215(1988)792

    ADS  Google Scholar 

  20. M. Doser et al., Nucl. Phys.A486(1988)493

    ADS  Google Scholar 

  21. B. May et al., Z. PhysikC46(1990)191,203

    Google Scholar 

  22. J. Reifenröther et al., Phys. Lett.B267(1991)299

    ADS  Google Scholar 

  23. P. Weidenauer et al., Z. Phys.C47(1990)353

    Google Scholar 

  24. P. Weidenauer et al., Z. Phys.C59(1993)387

    ADS  Google Scholar 

  25. H. R. Rubinstein, H. Stern, Phys. Lett.21(1966)447

    Article  ADS  Google Scholar 

  26. V. Mull, J. Haidenauer, T. Hippchen, K. Holinde, Phys. Rev.C44(1991)1337

    ADS  Google Scholar 

  27. V. Mull and K. Holinde, Phys. Rev.C49(1994)2763

    ADS  Google Scholar 

  28. H. Genz, M. Martinis, S. Tatur, Z. Phys.A335(1990)87

    Google Scholar 

  29. S. Mundigl, M. Vicente Vacas, W. Weise, Z. Phys.A338(1991)103

    Google Scholar 

  30. J. Vandermeulen, Z. Phys.C37(1988)563

    ADS  Google Scholar 

  31. C. B. Dover, T. Gutsche, M. Maruyama, A. Faessler, Prog. Part. Nucl. Phys.29(1992)87

    Article  ADS  Google Scholar 

  32. J. Carbonell, G. Ihle, J. M. Richard, Z. Phys.A334(1989)329

    Google Scholar 

  33. J. M. Richard, C. Dover and J. Carbonell, Phys. Rev.C44(1991)1281

    ADS  Google Scholar 

  34. T. Hippchen, K. Holinde and W. Plessas, Phys. Rev.C39(1989)761

    ADS  Google Scholar 

  35. A. M. Green, J. Niskanen, Nucl. Phys.A430(1984)605

    ADS  Google Scholar 

  36. M. Maruyama, T. Ueda, Prog. Theor. Phys.73(1985)1211

    Article  ADS  Google Scholar 

  37. T. Gutsche, M. Maruyama, A. Faessler, Nucl. Phys.503(1989)737

    Article  Google Scholar 

  38. M. Alberg, E. M. Henley, L. Wilets, Z. Phys.A331(1988)207

    Google Scholar 

  39. G. Bathas, W. M. Kloet, Phys. Lett.B301(1993)155

    ADS  Google Scholar 

  40. L. Mandrup, A. S. Jensen, A. Miranda, G. C. Oades, Phys. Lett.B270(1991)11

    ADS  Google Scholar 

  41. B. Moussallam, Nucl. Phys.A429(1984)429

    ADS  Google Scholar 

  42. F. Myhrer, J. Wroldsen, Rev. Mod. Phys.60(1988)629

    Article  ADS  Google Scholar 

  43. C. B. Dover, J. M. Richard, Phys. Rev.C21(1980)1466

    ADS  Google Scholar 

  44. M. P. Locher, B. S. Zou, Z. Phys.A341(1992)329

    Google Scholar 

  45. F. Walter, E. Klempt, J. Körner, in preparation

  46. A. Rotondi, in: Proc. LEAP’92, Courmayeur 1992, eds. C. Guaraldo, F. Iazzi, A. Zemoni, North Holland, 1993

  47. E. Klempt, Phys. Lett.B308(1993)179

    ADS  Google Scholar 

  48. E. Klempt, Phys. Lett.B308(1993)174

    ADS  Google Scholar 

  49. J.A. Niskanen and F. Myhrer, Phys. Lett.B157(1985)247

    ADS  Google Scholar 

  50. M. Maruyama et al., Phys. Lett.B215(1988)233

    ADS  MathSciNet  Google Scholar 

  51. V. Mull et al., Phys. Lett.B347(1995)193

    ADS  Google Scholar 

  52. S. Gasiorowicz, Elementary Particle Physics, John Wiley & Sons, New York, 1967

    MATH  Google Scholar 

  53. S. Coleman, in: High-Energy Physics and Elementary Physics (Triest 1965), International Atomic Energy Agency, Wien, 1965

    Google Scholar 

  54. M. Gell-Mann und Y. Ne’eman,The Eightfold Way, W. A. Benjamin, New York (1964)

    Google Scholar 

  55. U. Hartmann, E. Klempt, J. Körner, Phys. Lett.B155(1985)163

    ADS  Google Scholar 

  56. H. Sugawara, Prog. Theor. Phys.31(1964)213

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. M. Gorn, Nucl. Phys.B191(1981)269

    Article  ADS  Google Scholar 

  58. C. Rebbi, R. Slansky, Rev. Mod. Phys.42(1970)68

    Article  ADS  MathSciNet  Google Scholar 

  59. I. Bender, J. Körner, M. Schmidt, V. Linke, Nuovo Cimento16A(1973)377

    Google Scholar 

  60. Particle Data Group, Phys. Rev.D50(1994)1171

    Google Scholar 

  61. R. E. Cutkosky, Ann. Phys.23(1963)415

    Article  ADS  MathSciNet  Google Scholar 

  62. F. Gürsey, A. Pais, L. A. Radicatti, Phys. Rev. Lett.13(1964)299

    Article  ADS  MathSciNet  Google Scholar 

  63. P. H. Frampton, Dual Resonance Models, W. A. Benjamin, New York (1974)

    Google Scholar 

  64. E. Klempt, Phys. Lett.B244(1990)122

    ADS  Google Scholar 

  65. S. Okubo, Phys. Lett.5,(1963)165

    Article  MATH  MathSciNet  Google Scholar 

  66. G. Zweig, CERN Report TH 412 (1964)

  67. I. Iizuka, Prog. Theor. Phys. Suppl.37–38,(1966)21

    Google Scholar 

  68. J. Ellis, M. Karliner, D.E. Kharzeev and M.G. Sapozhnikov, CERN-TH.7326/94

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Weise

This work was partially supported by the BMBW, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klempt, E., Körner, J.G. & Walter, F. Antiproton-proton annihilation into two mesons: SU(3) coupling schemes for quark line rule, s-channel dominance and baryon exchange. Z. Phys. A — Hadrons and Nuclei 354, 67–85 (1996). https://doi.org/10.1007/s002180050014

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002180050014

PACS

Navigation