Skip to main content
Log in

Bioactive capacity of peanuts with different coat colors

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The present work aimed to evaluate three varieties of peanut (Arachis hypogaea L.) regarding the content of anthocyanins and total phenolics, antioxidant activity, phenolic profile and the alkaloids trigonelline and theobromine. The total phenolic content was analyzed by the Fast-Blue and Folin–Ciocalteau methods, while the antioxidant activity was analyzed by the β-carotene/linoleic acid, ABTS+ and FRAP methods. The phenolic profile and alkaloids were determined using high performance liquid chromatography (HPLC–DAD-UV–Vis). Peanuts with beige shells stood out with higher antioxidant activity and total phenolic content, while peanuts with purple shells stood out with higher anthocyanin content. Eight phenolic compounds and the alkaloids trigonelline and theobromine have been identified in peanut varieties. However, only four phenolics (gallic, syringic, ferulic and transcinnamic acids), in addition to the two alkaloids, were identified simultaneously in the three varieties studied. Chlorogenic acid was absent in red and purple-seeded varieties, catechin and resveratrol in varieties with red and beige coats, and p-coumaric acid in those with beige coats. For the first time, trigonelline and theobromine were identified in peanuts. Therefore, the bioactive composition and antioxidant activity of peanuts depend on its genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Settaluri VSK, Puppala CVK, Sundaram NJ (2012) Peanuts and their nutritional aspects—a review. Food Nutr Sci 3:1644–1650. https://doi.org/10.4236/fns.2012.312215

    Article  CAS  Google Scholar 

  2. Guo C, Xie YJ, Zhu MT, Xiong Q, Chen Y, Yu Q, Xie JH (2020) Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chem 316:1–9. https://doi.org/10.1016/j.foodchem.2020.126269

    Article  CAS  Google Scholar 

  3. Statista (2023). Production share of peanuts worldwide in 2021, by leading country. https://www.statista.com/statistics/1030846/major-producers-of-peanut-worldwide/. Accessed 18 Feb 2024

  4. Bodoira R, Rossi Y, Velez A, Montenegro M, Martínez M, Ribotta P, Maestri D (2022) Impact of storage conditions on the composition and antioxidant activity of peanut skin phenolic-based extract. Molecules 57(10):6471–6479. https://doi.org/10.1111/ijfs.15964

    Article  CAS  Google Scholar 

  5. Companhia Nacional de Abastecimento (Conab) (2024). Amendoim. https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/899-amendoim. Accessed 20 April 2024.

  6. Çiftçi S, Suna G (2022) Functional components of peanuts (Arachis Hypogaea L.) and health benefits: a review. Future Foods 5:100140. https://doi.org/10.1016/j.fufo.2022.100140

    Article  CAS  Google Scholar 

  7. Francisco MLDL, Resurreccion AVA (2008) Functional components in peanuts. Crit Rev Food Sci Nutr 48:715–746. https://doi.org/10.1080/10408390701640718

    Article  CAS  PubMed  Google Scholar 

  8. Jung M, Kim J, Ahn SM (2020) Factors associated with frequency of peanut consumption in Korea: a national population-based study. Nutrients 12(1207):1–15. https://doi.org/10.3390/nu12051207

    Article  CAS  Google Scholar 

  9. Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53(1):31–41. https://doi.org/10.1007/s13197-015-2007-9

    Article  CAS  PubMed  Google Scholar 

  10. Win M, Abdul Hamid A, Baharin B, Anwar F, Mc S, Dek M (2011) Phenolic compounds and antioxidant activity of peanut’s skin, hull, raw kernel and roasted kernel flour. Pak J Bot 43:1635–1642

    CAS  Google Scholar 

  11. Chen GH, Yang CY, Lee SJ, Wu CC, Tzen JTC (2014) Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J Food Drug Anal 22:303–309. https://doi.org/10.1016/j.jfda.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toomer OT (2018) Nutritional chemistry of the peanut (Arachis hypogaea). Crit Rev Food Sci Nutr 58(17):3042–3053. https://doi.org/10.1080/10408398.2017.1339015

    Article  CAS  PubMed  Google Scholar 

  13. Kyei SK, Akaranta O, Darko G (2020) Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds. Scientific African 8:1–14. https://doi.org/10.1016/j.sciaf.2020.e00406

    Article  Google Scholar 

  14. Zhao X, Chen J, Du F (2012) Potential use of peanut by-products in food processing: a review. J Food Sci Technol 49(5):521–529. https://doi.org/10.1007/s13197-011-0449-2

    Article  CAS  PubMed  Google Scholar 

  15. Chuenchom PSP, Senawong T, Jogloy S (2016) Antioxidant capacity and phenolic content evaluation on peanut skins from 3 peanut types. Chiang Mai J Sci 43(1):123–137

    CAS  Google Scholar 

  16. Guo J, Chen H, Liu N, Chen W, Zhou X, Luo H, Huang L, Li W, Wu B, Huai D, Lei Y, Liao B, Jiang H (2022) Identification and validation of a major locus with linked marker for resveratrol content in culitivated peanut. Euphytica 218(15):1–10. https://doi.org/10.1007/s10681-022-02969-2

    Article  CAS  Google Scholar 

  17. Nugrahini AD, Ishida M, Nakagawa T, Nishi K, Sugahara T (2020) Trigonelline: Na alkaloid with anti-degranulation properties. Mol Immunol 118:201–209. https://doi.org/10.1016/j.molimm.2019.12.020

    Article  CAS  PubMed  Google Scholar 

  18. Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M (2021) Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model. Biomed Pharmacother 134:1–9. https://doi.org/10.1016/j.biopha.2020.111140

    Article  CAS  Google Scholar 

  19. Cadoná FC, Dantas RF, de Mello GH, Silva FP Jr (2022) Natural products targeting into cancer hallmarks: an update on caffeine, theobromine, and (+)–catechin. Food Sci Nutr 62(26):7222–7241. https://doi.org/10.1080/10408398.2021.1913091

    Article  CAS  Google Scholar 

  20. Peerapen P, Boonmark W, Thongboonkerd V (2022) Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed Pharmacother 149:1–14. https://doi.org/10.1016/j.biopha.2022.112876

    Article  CAS  Google Scholar 

  21. Tanaka E, Mitani T, Nakashima M, Yonemoto E, Fujii H, Ashida H (2022) Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 100:1–11. https://doi.org/10.1016/j.jnutbio.2021.108898

    Article  CAS  Google Scholar 

  22. Köppen W (1936) Das geographische system der klimatologie. Borntrager, Berlim, p 44

    Google Scholar 

  23. Climate-Data.Org. (2024) Clima Santana de Garambéu (Brasil). Disponível: https://pt.climate-data.org/america-do-sul/brasil/minas-gerais/santana-do-garambeu-176063/&gt. Accessed 22 Apr 2024.

  24. Araújo AR, Oliveira JM, Pereira P, Curi N, Marques AFSM, Marques JJGSM (2019) Geomorfologia, solos e aptidão agrícola das terras da bacia do alto Rio Grande, Minas gerais. editora UFLA, Lavras, p 239

    Google Scholar 

  25. Barcia M, Pertuzatti P, Jacques A, Godoy H, Zambiazi R (2012) Bioactive compounds, antioxidant activity and percent composition of jambolão fruits (Syzygium cumini). Nat Prod J Shariah 2(2):129–138. https://doi.org/10.2174/2210315511202020129

    Article  CAS  Google Scholar 

  26. Whaterhouse AL (2002) Polyphenlics: determination of total phenolic. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. John Wiley, New York, pp 1–8

    Google Scholar 

  27. Paradiso VM, Castellino M, Renna M, Gattullo CE, Calasso M, Terzano R, Allegretta I, Leoni B, Caponio F, Santamaria P (2018) Nutritional characterization and shelf-life of packaged microgreens. Food Funct 9(11):5629–5640. https://doi.org/10.1039/C8FO01182F

    Article  CAS  PubMed  Google Scholar 

  28. Medina MB (2011) Determination of the total phenolics in juices and superfruits by a novel chemical method. J Funct Foods 3(2):79–87. https://doi.org/10.1016/j.jff.2011.02.007

    Article  CAS  Google Scholar 

  29. Rufino MDSM, Alves RE, de Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J (2010) Bioactive compounds and antioxidante capacities of 18 no-traditional tropical fruits from Brazil. Food Chem 121(4):996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  30. Auzanneau N, Weber P, Kosińska-Cagnazzo A, Andlauer W (2018) Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: comparison of seven cultivars over three harvesting years. J Food Compos Anal 66:81–89. https://doi.org/10.1016/j.jfca.2017.12.006

    Article  CAS  Google Scholar 

  31. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48(8):3396–3402. https://doi.org/10.1021/jf9913458

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira DF (2010) SISVAR–Sistema de análise de variância. In (Version 5.8) https://des.ufla.br/~danielff/programas/sisvar.html. Accessed 1 Dec 2023

  33. Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC (2012) Chemoface: a novel free user-friendly interface for chemometrics. J Braz Chem Soc 23(11):2003–2010. https://doi.org/10.1590/S0103-50532012005000073

    Article  CAS  Google Scholar 

  34. Attree R, Du B, Xu B (2015) Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod 67:448–456. https://doi.org/10.1016/j.indcrop.2015.01.080

    Article  CAS  Google Scholar 

  35. Kuang Q, Yu Y, Attree R, Xu B (2017) A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop 20(1):131–140. https://doi.org/10.1080/10942912.2017.1291676

    Article  CAS  Google Scholar 

  36. Yang QQ, Kim GAKF, Luo Q, Corke H (2020) Phenolic profile, antioxidant and antiproliferative activities of diverse peanut cultivars. J Food Measure Characteriz 14:2361–2369. https://doi.org/10.1007/s11694-020-00483-4

    Article  Google Scholar 

  37. Camargo AC, Regitano-d’Arce MAB, Shahidi F (2017) Phenolic profile of peanut by-products: antioxidant potential and inhibition of alfa-glucosidase and lipases activities. J Am Oil Chem Soc 94:959–971. https://doi.org/10.1007/s11746-017-2996-9

    Article  CAS  Google Scholar 

  38. Zhou Z, Fan Z, Meenu M, Xu B (2021) Impact of germination time on resveratrol, phenolic acids, and antioxidant capacities of different varieties of peanut (Arachis hypogaea Linn.) from China. Antioxidants 10:1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fernandes FHA, Salgado HRN (2016) Gallic acid: review of the methods of determination and quantification. Anal Chem 46:257–267. https://doi.org/10.1080/10408347.2015.1095064

    Article  CAS  Google Scholar 

  40. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A (2019) Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 22(3):225–237. https://doi.org/10.22038/ijbms.2019.32806.7897

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C (2022) The biological activity mechanism of chlorogenic acid and its applications in food industry: a review. Front Nutr 9(943911):1–22. https://doi.org/10.3389/fnut.2022.943911

    Article  CAS  Google Scholar 

  42. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C (2018) Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1016/j.biopha.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  43. Li D, Rui YX, Guo SD, Luan F, Liu R, Zeng N (2021) Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci 284:1–13. https://doi.org/10.1016/j.lfs.2021.119921

    Article  CAS  Google Scholar 

  44. Zhang L, Qu H, Xie M, Shi T, Shi P, Yu M (2023) Effects of different cooking methods on phenol content and antioxidant activity in sprouted peanut. Molecules 28(12):4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Ge S, Li S, Lin H, Lin S (2020) Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice. Food Chem Toxicol 137:111148. https://doi.org/10.1016/j.fct.2020.111148

    Article  CAS  PubMed  Google Scholar 

  46. Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9(163):1–27

    Google Scholar 

  47. Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL (2018) Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblastos. J Dermatol Sci 90:123–134. https://doi.org/10.1016/j.jdermsci.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  48. Putra NR, Rizkiyah DN, Qomariyah L, Aziz AHA, Veza I, Yunus MAC (2023) Experimental and modeling for catechin and epicatechinrecovery from peanut skin using subcritical etanol. J Food Process Eng 46(e14275):1–11. https://doi.org/10.1111/jfpe.14275

    Article  CAS  Google Scholar 

  49. Pedro A, Maciel GM, Ribeiro V, Haminiuk C (2019) Fundamental and applied aspects of catechins from differentsources: a reviews. Int J Food Sci Technol 55(2):429–442. https://doi.org/10.1111/ijfs.14371

    Article  CAS  Google Scholar 

  50. Phan-Thien KY, Wright GC, Lee NA (2014) Peanut antioxidants: Part 2. Quantitation of free and matrix-bound phytochemicals in five selected genotypes with diverse antioxidante capacity by high performance liquid chromatog-raphy (HPLC). LWT Food Sci Technol 57:312–319. https://doi.org/10.1016/j.lwt.2013.12.020

    Article  CAS  Google Scholar 

  51. Parvizi F, Yaghmaei P, Haeri Rohani SA, Mard AS (2020) Hepatoprotective properties of p-coumaric acid in a rat model of ischemia-reperfusio. Avicenna J Phytomed 10(6):633–640

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boo YC (2019) p-coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants 8(275):1–16

    Google Scholar 

  53. Rafiee Z, Moaiedi MZ, Gorji AV, Mansouri E (2020) Mitigates doxorubicin-induced nephrotoxicity through suppression of oxidative stress, inflammation and apoptosis. Arch Med Res 51:32–40. https://doi.org/10.1016/j.arcmed.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  54. Rudolf JR, Resurreccion AVA (2005) Elicitation of resveratrol in peanut kernels by application of abiotic stresses. J Agric Food Chem 53:10186–10192. https://doi.org/10.1021/jf0506737

    Article  CAS  PubMed  Google Scholar 

  55. Yin Y, Hu J, Yang Z, Fang W, Yang J (2023) Effects of methyl jasmonate and NaCl treatments on the resveratrol accumulation and defensive responses in germinated peanut (Arachis hypogaea L.). Plant Physiol Biochem 194:664–673. https://doi.org/10.1016/j.plaphy.2022.12.012

    Article  CAS  PubMed  Google Scholar 

  56. Sanders TH, McMichael RW, Hendrix KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48:1243–1246. https://doi.org/10.1021/jf990737b

    Article  CAS  PubMed  Google Scholar 

  57. Peláez PP, Bardón I, Camasca P (2016) Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor. Sci Agropec 7(4):355–365. https://doi.org/10.17268/sci.agropecu.2016.04.01

    Article  Google Scholar 

  58. Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW (2023) Risk assessment of trigonelline in coffee and coffee by-products. Molecules 28(3460):1–22. https://doi.org/10.3390/molecules28083460

    Article  CAS  Google Scholar 

  59. Wootton-Beard PC, Moran A, Ryan L (2011) Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res Int 44(1):217–224. https://doi.org/10.1016/j.foodres.2010.10.033

    Article  CAS  Google Scholar 

  60. Rumpf J, Burger R, Schulze M (2023) Statistical evaluation of DPPH, ABTS, FRAP, and folin-ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol 233:1–9. https://doi.org/10.1016/j.ijbiomac.2023.123470

    Article  CAS  Google Scholar 

  61. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19(6):669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  62. Marinova EM, Toneva A, Yanishlieva N (2009) Comparison of the antioxidative properties of caffeic and chlorogenic acids. Food Chem 114:1498–1502. https://doi.org/10.1016/j.foodchem.2008.11.045

    Article  CAS  Google Scholar 

  63. Tounekti T, Joubert E, Hernández I, Munné-Bosch S (2013) Improving the polyphenol content of tea. Crit Rev Plant Sci 32(3):192–215. https://doi.org/10.1080/07352689.2012.747384

    Article  CAS  Google Scholar 

  64. Tanaka T, Matsuo Y, Kouno I (2020) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11(1):14–40

    Article  Google Scholar 

  65. Rauf A, Imran M, Abu-Izneid T, Haq IU, Patel S, Pan X, Naz S, Silva AS, Saeed F, Suleria HAR (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother 116:1–6. https://doi.org/10.1016/j.biopha.2019.108999

    Article  CAS  Google Scholar 

  66. Liu C, Wang X, Shulaev V, Dixon RA (2016) A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nature plants 2:1–7. https://doi.org/10.1038/nplants.2016.182

    Article  CAS  Google Scholar 

  67. Uysal RS, Issa-Issa H, Sendra E, Carbonell-Barrachina ÁA (2023) Changes in anthocyanin pigments, trans-resveratrol, and colorimetric characteristics of Fondillón wine and other “Monastrell” wines during the aging period. Eur Food Res Technol 249(7):1821–1831. https://doi.org/10.1007/s00217-023-04256-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central of Analysis and Chemical Prospecting of the Federal University of Lavras, and Finep, To The National Council of Technological and Scientific Development (CNPq:304413/2016-0; 302699/2019-8), the Minas Gerais Research Support Foundation (FAPEMIG: PPM-00458-15; PPM-00355-17), and the Higher Education Personnel Improvement Coordination (CAPES: 88881.068456/2014-01) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Gilson Gustavo Lucinda Machado: Conceptualization, Investigation, Methodology, Data curation, Formal analysis, Writing – original draft. Ana Beatriz Silva Araújo: Conceptualization, Formal Analysis. Ana Cristina Freitas de Oliveira Meira: Conceptualization, Formal analysis. Carlos Henrique Milagres Ribeiro: Conceptualization, Formal analysis. Ingrid Alves Santos: Conceptualization, Formal analysis. Lorrane Ribeiro de Souza: Conceptualization, Formal analysis. Elano Pinheiro Pereira: Conceptualization, Formal analysis. Eduardo Valério de Barros Vilas Boas: Conceptualization, Fundraising, Project Administration, Supervision, Validation, Visualization, Writing—Original Draft.

Corresponding author

Correspondence to Eduardo Valério de Barros Vilas Boas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subject.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, G.G.L., Araújo, A.B.S., de Oliveira Meira, A.C.F. et al. Bioactive capacity of peanuts with different coat colors. Eur Food Res Technol (2024). https://doi.org/10.1007/s00217-024-04572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-024-04572-2

Keywords

Navigation