Skip to main content
Log in

Canudo-de-pito (Escallonia sp.) honey: a comprehensive analysis of quality, composition, and pollen identification

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Canudo-de-pito honey (CPH) is produced by Apis mellifera bees using nectar from Escallonia plant species located in Santa Catarina’s plateau mountain region, Brazil. Despite the international recognition of its quality and great potential for market appreciation, the composition and quality of CPH remain unexploited. They could potentially contribute to further research and advancements in honey authentication processes. In this preliminary study, we investigate the pollen profile, quality parameters, color, minerals, and phenolic compounds of CPH samples. The frequency of pollen from different plant species was observed in CPH, in which four were described as monofloral (> 45%), and five showed a significant contribution of canudo-de-pito pollen (> 30%). The dominant color was light amber, and the quality parameters agreed with the international standards except for electrical conductivity (0.88–1.33 mS/cm) due to high concentrations of minerals, mainly potassium (1913.75–3022.34 mg/kg) when compared to floral honey. The main compounds quantified were the phenolic acids (abscisic, salicylic, and syringic) (6.54–75.61 μg/g). These results provided helpful knowledge about CPH composition, demonstrating its quality and peculiar characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Commission E (2002) Council Directive 2001/110/EC Relating to honey. Off J Eur Commun 110:47–50

    Google Scholar 

  2. Bergamo G, Tischer Seraglio SK, Gonzaga LV et al (2018) Mineral profile as a potential parameter for verifying the authenticity of bracatinga honeydew honeys. LWT 97:390–395. https://doi.org/10.1016/j.lwt.2018.07.028

    Article  CAS  Google Scholar 

  3. da Silva PM, Gauche C, Gonzaga LV et al (2016) Honey: Chemical composition, stability and authenticity. Food Chem 196:309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

    Article  CAS  PubMed  Google Scholar 

  4. da Silva PM, Gonzaga LV, de Azevedo MS et al (2020) Stability of volatile compounds of honey during prolonged storage. J Food Sci Technol 57:1167–1182. https://doi.org/10.1007/s13197-019-04163-0

    Article  CAS  PubMed  Google Scholar 

  5. Silva B, Valdomiro Gonzaga L, Fett R, Oliveira Costa AC (2019) Simplex-centroid design and Derringer’s desirability function approach for simultaneous separation of phenolic compounds from Mimosa scabrella Bentham honeydew honeys by HPLC/DAD. J Chromatogr A 1585:182–191. https://doi.org/10.1016/j.chroma.2018.11.072

    Article  CAS  PubMed  Google Scholar 

  6. Biluca FC, Braghini F, de Ferreira GC et al (2021) Physicochemical parameters, bioactive compounds, and antibacterial potential of stingless bee honey. J Food Process Preserv 45:1–11. https://doi.org/10.1111/jfpp.15127

    Article  CAS  Google Scholar 

  7. da Silva PM, Gonzaga LV, Biluca FC et al (2020) Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT 129:10. https://doi.org/10.1016/j.lwt.2020.109521

    Article  CAS  Google Scholar 

  8. Silva B, Brugnerotto P, Seraglio SKT et al (2022) Physicochemical, phenolic, and mineral characterization of Mimosa scabrella Bentham honeydew honey: a trial for obtaining the geographical identification. J Food Compos Anal 114:104851. https://doi.org/10.1016/j.jfca.2022.104851

    Article  CAS  Google Scholar 

  9. Felker RM (2014) Potencial da Escallonia bifida Link & Otto (Escalloniaceae) para uso em restauração ecológica no Rio Grande do Sul, Brasil. 156

  10. Carvalho PER de (2008) Espécies Arbóreas Brasileiras: Canudo-de-Pito (Escallonia bifidai), 3rd edn. Embrapa, Brasília

    Google Scholar 

  11. Martins D, Chaves CL, da Bortoluzzi RCL, Mantovani A (2011) Florística de Floresta Ombrófila Mista Altomontana e de Campos em Urupema, Santa Catarina, Brasil. Revista Brasileira de Biociências 9:1679–2343

    Google Scholar 

  12. EPAGRI (2021) Planta nativa da região de São Joaquim, canudo-de-pito produz um dos melhores méis do mundo. https://www.agricultura.sc.gov.br/planta-nativa-da-regiao-de-sao-joaquim-canudo-de-pito-produz-um-dos-melhores-meis-do-mundo/. Accessed 29 Oct 2022

  13. Azevedo MS (2017) Mel de Melato de Bracatinga (Mimosa scabrella bentham) do Planalto Serrano de Santa Catarina: Discriminação e Potencialidade Funcional. Universidade Federal de Santa Catarina

  14. Brugnerotto P, Seraglio SKT, Dortzbach D et al (2022) Melissopalinological, chemical and phenolic analysis of “canudo de pito” honey: a product from specific region of Brazil. Eur Food Res Technol 1:1–12. https://doi.org/10.1007/s00217-022-04116-6

    Article  CAS  Google Scholar 

  15. Elamine Y, Lyoussi B, Anjos O et al (2019) Zantaz honey “monoflorality”: chemometric applied to the routinely assessed parameters. LWT 106:29–36. https://doi.org/10.1016/j.lwt.2019.02.039

    Article  CAS  Google Scholar 

  16. Medina S, Pereira JA, Silva P et al (2019) Food fingerprints—A valuable tool to monitor food authenticity and safety. Food Chem 278:144–162

    Article  CAS  PubMed  Google Scholar 

  17. Silva B, Biluca FC, Mohr ETB et al (2020) Effect of Mimosa scabrella Bentham honeydew honey on inflammatory mediators. J Funct Foods. https://doi.org/10.1016/j.jff.2020.104034

    Article  Google Scholar 

  18. Sun LP, Shi FF, Zhang WW et al (2020) Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L.) honey extract. Foods. https://doi.org/10.3390/foods9081039

  19. Yu W, Sun F, Xu R et al (2022) Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 14:250–261. https://doi.org/10.1039/d2fo02233h

    Article  CAS  Google Scholar 

  20. Escriche I, Juan-Borrás M, Visquert M, Valiente JM (2023) An overview of the challenges when analysing pollen for monofloral honey classification. Food Control 143:109305. https://doi.org/10.1016/j.foodcont.2022.109305

    Article  Google Scholar 

  21. Louveaux J, Maurizio A, Vorwohl G (1978) Methods of Melissopalynology. Bee World 59:139–157. https://doi.org/10.1080/0005772x.1978.11097714

    Article  Google Scholar 

  22. Joosten H, De Klerk P (2002) What’s in a name? Some thoughts on pollen classification, identification, and nomenclature in Quaternary palynology. Rev Palaeobot Palynol 122:29–45. https://doi.org/10.1016/S0034-6667(02)00090-8

    Article  Google Scholar 

  23. Barth OM, da Freitas A, S de, Luz CFP da, (2021) Usual laboratorial techniques in tropical Melissopalynology. In: Lemos JR (ed) Ensino, Pesquisa e Inovação em Botânica. Atena Editora, Ponta Grossa, pp 85–98

    Chapter  Google Scholar 

  24. Von Der Ohe W, Persano Oddo L, Piana ML et al (2004) Harmonized methods of melissopalynology. Apidologie 35:18–25. https://doi.org/10.1051/apido:2004050

    Article  Google Scholar 

  25. Jones GD, Bryant VM (1996) Melissopalynology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundations, Salt Lake City, pp 933–938

    Google Scholar 

  26. AOAC (2006) Official Method of Analysis (18th). Association of Official Analytical Chemists, Gaithersburgs

    Google Scholar 

  27. Rizelio VM, Tenfen L, Da Silveira R et al (2012) Development of a fast capillary electrophoresis method for determination of carbohydrates in honey samples. Talanta 93:62–66. https://doi.org/10.1016/j.talanta.2012.01.034

    Article  CAS  PubMed  Google Scholar 

  28. Rizelio VM, Gonzaga LV, Borges DSC, G, et al (2012) Development of a fast MECK method for determination of 5-HMF in honey samples. Food Chem 133:1640–1645. https://doi.org/10.1016/j.foodchem.2011.11.058

    Article  CAS  Google Scholar 

  29. Bogdanov S, Lüllmann C, Martin P et al (1999) Honey quality and international regulatory standards: review by the international honey commission. Bee World 80:61–69. https://doi.org/10.1080/0005772x.1999.11099428

    Article  Google Scholar 

  30. Rizelio VM, Gonzaga LV, Borges GDSC et al (2012) Fast determination of cations in honey by capillary electrophoresis: a possible method for geographic origin discrimination. Talanta 99:450–456. https://doi.org/10.1016/j.talanta.2012.06.009

    Article  CAS  Google Scholar 

  31. Nayik GA, Nanda V (2016) A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT 74:504–513. https://doi.org/10.1016/j.lwt.2016.08.016

    Article  CAS  Google Scholar 

  32. USDA (1985) United States Standards for Grades of Extracted Honey. Fed Regist. https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Standard%5B1%5D.pdf. Accessed 11 Nov 2022

  33. Beretta G, Granata P, Ferrero M et al (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191. https://doi.org/10.1016/j.aca.2004.11.010

    Article  CAS  Google Scholar 

  34. Silva B, Gonzaga LV, Fett R, Oliveira Costa AC (2019) Improved strategy based on QuEChERS method followed by HPLC/DAD for the quantification of phenolic compounds from Mimosa scabrella Bentham honeydew honeys. Lwt 116:108471. https://doi.org/10.1016/j.lwt.2019.108471

    Article  CAS  Google Scholar 

  35. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  36. Bertoncelj J, Doberšek U, Jamnik M, Golob T (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 105:822–828. https://doi.org/10.1016/j.foodchem.2007.01.060

    Article  CAS  Google Scholar 

  37. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158. https://doi.org/10.5344/ajev.1965.16.3.144

    Article  CAS  Google Scholar 

  38. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  39. Kim DO, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717. https://doi.org/10.1021/jf020071c

    Article  CAS  PubMed  Google Scholar 

  40. Wiese H (2020) Nova apicultura. Atualizada e ampliada por James Arruda Salomé, 10th ed. Guaíba, Rio Grande do Sul, Brazil

  41. Machado AM, Tomás A, Russo-Almeida P et al (2022) Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157:111362. https://doi.org/10.1016/J.FOODRES.2022.111362

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Gill JPS, Bedi JS et al (2018) Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Res Int 108:571–583. https://doi.org/10.1016/j.foodres.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  43. da Luz CFP, de Chaves SAM, Cano CB (2021) Botanical and geographical origins of honey samples from Pantanal (Mato Grosso and Mato Grosso do Sul states, Brazil) certificated by melissopalynology. Grana 60:189–216. https://doi.org/10.1080/00173134.2020.1815831

    Article  Google Scholar 

  44. Estevinho LM, Chambó ED, Pereira APR et al (2016) Characterization of Lavandula spp. honey using multivariate techniques. PLoS ONE. https://doi.org/10.1371/journal.pone.0162206

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bergamo G, Seraglio SKT, Gonzaga LV et al (2019) Physicochemical characteristics of bracatinga honeydew honey and blossom honey produced in the state of Santa Catarina: an approach to honey differentiation. Food Res Int 116:745–754. https://doi.org/10.1016/j.foodres.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  46. Chirife J, Zamora MC, Motto A (2006) The correlation between water activity and % moisture in honey: Fundamental aspects and application to Argentine honeys. J Food Eng 72:287–292. https://doi.org/10.1016/J.JFOODENG.2004.12.009

    Article  Google Scholar 

  47. Escuredo O, Dobre I, Fernández-González M, Seijo MC (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149:84–90. https://doi.org/10.1016/J.FOODCHEM.2013.10.097

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Shan Y, Zhu X et al (2012) Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J Food Compos Anal 28:69–74. https://doi.org/10.1016/J.JFCA.2012.07.006

    Article  Google Scholar 

  49. Geană EI, Ciucure CT, Costinel D, Ionete RE (2020) Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Control 109:106919. https://doi.org/10.1016/j.foodcont.2019.106919

    Article  CAS  Google Scholar 

  50. de la Fuente E, Ruiz-Matute AI, Valencia-Barrera RM et al (2011) Carbohydrate composition of Spanish unifloral honeys. Food Chem 129:1483–1489. https://doi.org/10.1016/J.FOODCHEM.2011.05.121

    Article  Google Scholar 

  51. Sakač MB, Jovanov PT, Marić AZ et al (2019) Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem 276:15–21. https://doi.org/10.1016/j.foodchem.2018.09.149

    Article  CAS  PubMed  Google Scholar 

  52. Stankovska E, Stafilov T, Šajn R (2008) Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry. Environ Monit Assess 142:117–126. https://doi.org/10.1007/s10661-007-9913-x

    Article  CAS  PubMed  Google Scholar 

  53. de Oliveira Neto WM, Paiva RDN, de Novais JS (2020) “Honey is Good for Health”: Patterns of honey purchasing and consumption in Lower Amazon. CBR Consum Behav Rev 4:324. https://doi.org/10.51359/2526-7884.2020.247470

    Article  Google Scholar 

  54. Pontis JA, da Costa LAMA, da Silva SJR, Flach A (2014) Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci Technol 34:69–73. https://doi.org/10.1590/S0101-20612014005000015

    Article  Google Scholar 

  55. Elamine Y, Aazza S, Lyoussi B et al (2018) Preliminary characterization of a Moroccan honey with a predominance of Bupleurum spinosum pollen. J Apic Res 57:153–165. https://doi.org/10.1080/00218839.2016.1265759

    Article  Google Scholar 

  56. Zhang XH, Qing XD, Mu ST et al (2021) Authentication of honey of different nectar sources and antioxidant property evaluation by phenolic composition analysis with chemometrics. Food Control 124:107900. https://doi.org/10.1016/J.FOODCONT.2021.107900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Agricultural Research and Rural Extension Company of Santa Catarina (EPAGRI, Brazil) and the beekeepers for generously providing the honey samples. Special thanks are extended to EPAGRI researchers Dr. Denilson Dortzbach and Valci Vieira for assistance in creating the location map of the honey samples.

Funding

This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) [grant number 001]. The following authors have received research support from the National Council for Scientific and Technological Development (CNPq): SKTS [Grant number 150915/2022–5], MS [Grant number 165753/2020–0], BS [Grant number 150743/2023–8], CFPL [Grant number 307607/2022–4], and ACOC [grant number 309702/2022–4].

Author information

Authors and Affiliations

Authors

Contributions

ACNA: conceptualization, formal analysis, investigation, writing—riginal draft preparation, writing—reviewing and editing. VVG: investigation, writing—reviewing and editing. SKTS: investigation, writing—reviewing and editing. MS: investigation, writing—reviewing and editing. BS: investigation, writing—reviewing and editing. CFPdL: formal analysis, investigation, writing—reviewing and editing. ALd: formal analysis, investigation. MRRPM: conceptualization. LVG: conceptualization, supervision, writing—reviewing and editing. RF: funding acquisition. ACOC: conceptualization, supervision, writing—reviewing and editing, funding acquisition.

Corresponding authors

Correspondence to Ana Clara Nascimento Antunes or Ana Carolina Oliveira Costa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Compliance with ethics requirements

This research paper does not contain any studies with humans and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 361 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, A.C.N., Gomes, V.V., Seraglio, S.K.T. et al. Canudo-de-pito (Escallonia sp.) honey: a comprehensive analysis of quality, composition, and pollen identification. Eur Food Res Technol 250, 1239–1251 (2024). https://doi.org/10.1007/s00217-023-04459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04459-8

Keywords

Navigation