Skip to main content
Log in

Multiscale analysis of hydrated gluten structure and phase distribution under thermal treatments

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The present study displays a comprehensive investigation into the micro- and macrostructures of gluten and its responses to temperature-induced changes, employing various analytical techniques. The integration of time domain-nuclear magnetic resonance (TD-NMR), differential scanning calorimetry (DSC), size-exclusion high-performance liquid chromatography (SE-HPLC), field emission scanning electron microscopy (FESEM), solid-state nuclear magnetic resonance (ssNMR), and multiphoton laser microscopy (MLM) measurements facilitates the multidimensional examination of gluten’s phase distribution and structure across various scales. Notably, TD-NMR helps to refine prior T2 assignments for hydrated gluten through dynamic T2 measurements at sub-zero temperatures. The innovative application of TD-NMR uncovers insights into freezable water quantities and their changes under varying temperature conditions. Through real-time analyses utilizing not only TD-NMR but also MLM techniques, along with SE-HPLC measurements, the study highlights increased lacunarities in the gluten structure, particularly between 60 and 85 °C. These structural changes are attributed to heating effects that unfold and denature proteins and culminate in aggregation and crosslinking phenomena, leading to the release of water into macropores, hence changes in the water distribution in the gluten matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Belton PS (1999) Mini review: on the elasticity of wheat gluten. J Cereal Sci 29:103–107. https://doi.org/10.1006/jcrs.1998.0227

    Article  CAS  Google Scholar 

  2. Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357:133–142. https://doi.org/10.1098/rstb.2001.1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119. https://doi.org/10.1016/j.fm.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Kontogiorgos V (2011) Microstructure of hydrated gluten network. Food Res Int 44:2582–2586. https://doi.org/10.1016/j.foodres.2011.06.021

    Article  CAS  Google Scholar 

  5. Georget DMR, Belton PS (2006) Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy. Biomacromol 7:469–475. https://doi.org/10.1021/bm050667j

    Article  CAS  Google Scholar 

  6. Wang P, Zou M, Tian M et al (2018) The impact of heating on the unfolding and polymerization process of frozen-stored gluten. Food Hydrocoll 85:195–203. https://doi.org/10.1016/j.foodhyd.2018.07.019

    Article  CAS  Google Scholar 

  7. Mallamace F, Corsaro C, Baglioni P et al (2012) The dynamical crossover phenomenon in bulk water, confined water and protein hydration water. J Phys Condens Matter 24:064103. https://doi.org/10.1088/0953-8984/24/6/064103

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kontogiorgos V (2017) Thermal transitions, mechanical relaxations and microstructure of hydrated gluten networks. In: Ahmed J (ed) Glass transition and phase transitions in food and biological materials. John Wiley & Sons Ltd, Chichester, UK, pp 207–223

    Chapter  Google Scholar 

  9. Cuq B, Abecassis J, Guilbert S (2003) State diagrams to help describe wheat bread processing. Int J Food Sci Technol 38:759–766. https://doi.org/10.1046/j.1365-2621.2003.00748.x

    Article  CAS  Google Scholar 

  10. Lagrain B, Wilderjans E, Glorieux C, Delcour JA (2012) Importance of gluten and starch for structural and textural properties of crumb from fresh and stored bread. Food Biophys 7:173–181. https://doi.org/10.1007/s11483-012-9255-2

    Article  Google Scholar 

  11. Wagner M, Morel M-H, Bonicel J, Cuq B (2011) Mechanisms of heat-mediated aggregation of wheat gluten protein upon pasta processing. J Agric Food Chem 59:3146–3154. https://doi.org/10.1021/jf104341w

    Article  CAS  PubMed  Google Scholar 

  12. Grenier D, Rondeau-Mouro C, Dedey KB et al (2021) Gas cell opening in bread dough during baking. Trends Food Sci Technol 109:482–498. https://doi.org/10.1016/j.tifs.2021.01.032

    Article  CAS  Google Scholar 

  13. Martin C, Morel M-H, Reau A, Cuq B (2019) Kinetics of gluten protein-insolubilisation during pasta processing: decoupling between time- and temperature-dependent effects. J Cereal Sci 88:103–109. https://doi.org/10.1016/j.jcs.2019.05.014

    Article  CAS  Google Scholar 

  14. Leon A, Rosell CM, Benedito de Barber C (2003) A differential scanning calorimetry study of wheat proteins. Eur Food Res Technol 217:13–16. https://doi.org/10.1007/s00217-003-0699-y

    Article  CAS  Google Scholar 

  15. Bosmans GM, Lagrain B, Deleu LJ et al (2012) Assignments of proton populations in dough and bread using NMR relaxometry of starch, gluten, and flour model systems. J Agric Food Chem 60:5461–5470. https://doi.org/10.1021/jf3008508

    Article  CAS  PubMed  Google Scholar 

  16. Calucci L, Forte C, Galleschi L et al (2003) 13C and 1H solid state NMR investigation of hydration effects on gluten dynamics. Int J Biol Macromol 32:179–189. https://doi.org/10.1016/S0141-8130(03)00052-7

    Article  CAS  PubMed  Google Scholar 

  17. Gao X, Tong J, Guo L et al (2020) Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll 106:105885. https://doi.org/10.1016/j.foodhyd.2020.105885

    Article  CAS  Google Scholar 

  18. Kontogiorgos V, Goff HD (2006) Calorimetric and microstructural investigation of frozen hydrated gluten. Food Biophys 1:202–215. https://doi.org/10.1007/s11483-006-9021-4

    Article  Google Scholar 

  19. Wehrli MC, Kratky T, Schopf M et al (2021) Thermally induced gluten modification observed with rheology and spectroscopies. Int J Biol Macromol 173:26–33. https://doi.org/10.1016/j.ijbiomac.2021.01.008

    Article  CAS  PubMed  Google Scholar 

  20. Rondeau-Mouro C, Cambert M, Kovrlija R et al (2015) Temperature-associated proton dynamics in wheat starch-based model systems and wheat flour dough evaluated by NMR. Food Bioprocess Technol 8:777–790. https://doi.org/10.1007/s11947-014-1445-0

    Article  CAS  Google Scholar 

  21. Riley IM, Nivelle MA, Ooms N, Delcour JA (2022) The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: a review. Compr Rev Food Sci Food Saf 21:4738–4775. https://doi.org/10.1111/1541-4337.13029

    Article  CAS  PubMed  Google Scholar 

  22. Dufour M, Foucat L, Hugon F et al (2023) Water mobility and microstructure of gluten network during dough mixing using TD NMR. Food Chem 409:135329. https://doi.org/10.1016/j.foodchem.2022.135329

    Article  CAS  PubMed  Google Scholar 

  23. Baier-Schenk A, Handschin S, von Schönau M et al (2005) In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): formation of ice and changes in the gluten network. J Cereal Sci 42:255–260. https://doi.org/10.1016/j.jcs.2005.04.006

    Article  CAS  Google Scholar 

  24. Morel M-H, Redl A, Guilbert S (2002) Mechanism of heat and shear mediated aggregation of wheat gluten protein upon mixing. Biomacromol 3:488–497. https://doi.org/10.1021/bm015639p

    Article  CAS  Google Scholar 

  25. Xuan Y-F, Zhang Y, Zhao Y-Y et al (2017) Effect of hydroxypropylmethylcellulose on transition of water status and physicochemical properties of wheat gluten upon frozen storage. Food Hydrocoll 63:35–42. https://doi.org/10.1016/j.foodhyd.2016.08.025

    Article  CAS  Google Scholar 

  26. Belton PS, Duce SL, Tatham AS (1987) 13C solution state and solid state n.m.r. of wheat gluten. Int J Biol Macromol. https://doi.org/10.1016/0141-8130(87)90009-2

    Article  Google Scholar 

  27. Zhang X, Do MD, Hoobin P, Burgar I (2006) The phase composition and molecular motions of plasticized wheat gluten-based biodegradable polymer materials studied by solid-state NMR spectroscopy. Polymer 47:5888–5896. https://doi.org/10.1016/j.polymer.2006.05.060

    Article  CAS  Google Scholar 

  28. Alberti E, Tatham AS, Gilbert SM, Gil AM (2007) What can NMR tell you about the molecular origins of gluten viscoleasticity? In: Shewry PR, Tatham AS (eds) Special Publications. Royal Society of Chemistry, Cambridge, pp 368–371

    Google Scholar 

  29. Nordqvist P, Johansson E, Khabbaz F, Malmström E (2013) Characterization of hydrolyzed or heat treated wheat gluten by SE-HPLC and 13C NMR: correlation with wood bonding performance. Ind Crops Prod 51:51–61. https://doi.org/10.1016/j.indcrop.2013.08.057

    Article  CAS  Google Scholar 

  30. Cherian G, Chinachoti P (1996) 2H and 170 nuclear magnetic resonance study of water in gluten in the glassy and rubbery state. Cereal Chem 73(5):618–624

    Google Scholar 

  31. Roos YH (2010) Glass transition temperature and its relevance in food processing. Annu Rev Food Sci Technol 1:469–496. https://doi.org/10.1146/annurev.food.102308.124139

    Article  CAS  PubMed  Google Scholar 

  32. Overloop K, Vangerven L (1993) Freezing phenomena in adsorbed water as studied by NMR. J Magn Reson A 101:179–187. https://doi.org/10.1006/jmra.1993.1028

    Article  ADS  CAS  Google Scholar 

  33. Tang H-R, Godward J, Hills B (2000) The distribution of water in native starch granules—a multinuclear NMR study. Carbohydr Polym 43:375–387. https://doi.org/10.1016/S0144-8617(00)00183-1

    Article  CAS  Google Scholar 

  34. Mallamace F, Broccio M, Corsaro C et al (2006) Dynamical properties of confined supercooled water: an NMR study. J Phys Condens Matter 18:S2285–S2297. https://doi.org/10.1088/0953-8984/18/36/S04

    Article  CAS  Google Scholar 

  35. Simpson JH, Carr HY (1958) Diffusion and nuclear spin relaxation in water. Phys Rev 111:1201–1202. https://doi.org/10.1103/PhysRev.111.1201

    Article  ADS  CAS  Google Scholar 

  36. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712. https://doi.org/10.1103/PhysRev.73.679

    Article  ADS  CAS  Google Scholar 

  37. Schaschke C (2014) Dictionary of chemical engineering A. Oxford University Press, USA

    Book  Google Scholar 

  38. Engler N, Ostermann A, Niimura N, Parak FG (2003) Hydrogen atoms in proteins: positions and dynamics. Proc Natl Acad Sci 100:10243–10248. https://doi.org/10.1073/pnas.1834279100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atkin NJ, Abeysekera RM, Robards AW (1998) The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydr Polym 36:193–204. https://doi.org/10.1016/S0144-8617(98)00002-2

    Article  CAS  Google Scholar 

  40. Muñoz LA, Pedreschi F, Leiva A, Aguilera JM (2015) Loss of birefringence and swelling behavior in native starch granules: microstructural and thermal properties. J Food Eng 152:65–71. https://doi.org/10.1016/j.jfoodeng.2014.11.017

    Article  CAS  Google Scholar 

  41. Ratnayake WS, Jackson DS (2007) A new insight into the gelatinization process of native starches. Carbohydr Polym 67(4):511–529. https://doi.org/10.1016/j.carbpol.2006.06.025

    Article  CAS  Google Scholar 

  42. van de Velde F, van Riel J, Tromp RH (2002) Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J Sci Food Agric 82:1528–1536. https://doi.org/10.1002/jsfa.1165

    Article  CAS  Google Scholar 

  43. Yang T, Wang P, Zhou Q et al (2022) Effects of different gluten proteins on starch’s structural and physicochemical properties during heating and their molecular interactions. Int J Mol Sci 23:8523. https://doi.org/10.3390/ijms23158523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kalichevsky MT, Jaroszkiewicz EM, Ablett S et al (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18:77–88. https://doi.org/10.1016/0144-8617(92)90129-E

    Article  CAS  Google Scholar 

  45. Noel TR, Parker R, Ring SG, Tatham AS (1995) The glass-transition behaviour of wheat gluten proteins. Int J Biol Macromol 17:81–85. https://doi.org/10.1016/0141-8130(95)93521-X

    Article  CAS  PubMed  Google Scholar 

  46. Kovrlija R, Rondeau-Mouro C (2017) Hydrothermal changes in wheat starch monitored by two-dimensional NMR. Food Chem 214:412–422. https://doi.org/10.1016/j.foodchem.2016.07.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by INRAE (National Research Institute for Agriculture, Food and the Environment, France), the Regional Council of Brittany (France) and Rennes Metropole. We acknowledge the help of Marcel Giesbers and Jelmer Vroom from the Wageningen Electron Microscopy Centre in providing the FESEM images. TD-NMR experiments were carried out using the NMR facilities of PRISM (Rennes, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Rondeau-Mouro.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with ethics requirements

This work didn't involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshi, E., Falourd, X., Morel, MH. et al. Multiscale analysis of hydrated gluten structure and phase distribution under thermal treatments. Eur Food Res Technol 250, 1201–1217 (2024). https://doi.org/10.1007/s00217-023-04456-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04456-x

Keywords

Navigation