Skip to main content
Log in

Effects of cultivars as rootstocks on the expression of aroma components and related genes in Shine Muscat grape

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of different rootstocks (including cultivars) on the quality and sensory properties of Shine Muscat grapes were investigated with own-rooted vines as control. Compared to the own-rooted vines, berry weight, TSS/TA and phenolic profiles were altered by the rootstocks to varying extents. The rootstocks widely altered the amounts of aroma components. Berries on ‘Yuanyu’ (YY), ‘Bixiang Seedless’ (BS), ‘Couderc 3309’ (3309C), ‘Summer Black’ (SB) and ‘Queen Nina’ (QN) significantly increased total aroma amount to the control berries, while ‘Zaoxiaxiang’ (ZX) imparted slight effects on the total aroma amount. Besides, the rootstock QN and 3309C markedly upregulated the VvLoXA, VvADH1 and VvADH2 expression levels, compared to the own-rooted grapevines, the berries observably upregulated seven genes from the MEP pathway in the grafted vines on SB and 3309C. In addition, the rootstock ZX, and ‘Kober 5BB’ (5BB) significantly increased the VvGT7 expression levels, the berries on YY significantly enhanced the expression of VvGT14. In summary, we found that the rootstock 3309C, QN and SB provided berries of better quality and richer aroma volatiles to SM berries, and the berries on QN (V. vinifera × V. labrusca varieties) had the largest total aroma amount and berry weight.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

XJ:

Xiaolajiao

YY:

Yuanyu

BS:

Bixiang seedless

ZX:

Zaoxiaxiang

QN:

Queen Nina

SB:

Summer Black

5BB:

Kobel 5BB

3309C:

Couderc 3309

SM:

Shine Muscat

TSS:

Total soluble solid

TA:

Titratable Acid

TPC:

Total phenolic compound content

TTC:

Total tannin content

TFa:

Total flavan-3-ol content

TFo:

Total flavonoid content

AAT:

Alcohol acyltransferases

ADH:

Alcohol dehydrogenase

DXR:

1-Deoxy-D-xylulose 5-phosphate reductoisomerase

DXS:

1-Deoxy-D-xylulose-5-phosphate synthase

HDR:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase

HPL:

Hydroperoxides

LOX:

Lipoxygenase

MEP:

Methylerythritol phosphate

MVA:

Mevalonic acid

References

  1. Li XL, Wang CR, Li XY, Yao YX, Hao YJ (2013) Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chem 139(1–4):931–937. https://doi.org/10.1016/j.foodchem.2013.02.038

    Article  CAS  PubMed  Google Scholar 

  2. Duan LL, Pan QH, Tang XJ, Yang Q, Jiang R, Duan CQ (2014) Characteristic aroma compounds in two new Vitis vinifera cultivars (table grapes) and impact of vintage and greenhouse cultivation. S Afr J Enol Vitic 35:264–277. https://doi.org/10.21548/35-2-1015

    Article  CAS  Google Scholar 

  3. Somkuwar RG, Taware PB, Bhange MA, Sharma J, Khan I (2015) Influence of different rootstocks on growth, photosynthesis, biochemical composition, and nutrient contents in ‘Fantasy Seedless’ grapes. Int J Fruit Sci 15:251–266. https://doi.org/10.1080/15538362.2015.1031564

    Article  Google Scholar 

  4. Klimek K, Kapłan M, Najda A (2022) Influence of rootstock on yield quantity and quality, contents of biologically active compounds and antioxidant activity in regent grapevine fruit. Molecules 27(7):2065. https://doi.org/10.3390/molecules27072065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang F, Zhong H, Zhou X, Pan M, Xu J, Liu M, Wang M, Liu G, Xu T, Wang Y, Wu X, Xu Y (2022) Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. Hortic Res 9:uhac055. https://doi.org/10.1093/hr/uhac055

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pou A, Rivacoba L, Portu J, Mairata A, Labarga D, Garcia-Escudero E, Martin I (2022) How rootstocks impact the scion vigour and vine performance of Vitis vinifera L. cv. Tempranillo. Aust J Grape Wine Res. https://doi.org/10.1155/2022/9871347

    Article  Google Scholar 

  7. Jin Z, Sun H, Sun T, Wang Q, Yao Y (2016) Modifications of “Gold Finger” grape berry quality as affected by the different rootstocks. J Agric Food Chem 64(21):4189–4197. https://doi.org/10.1021/acs.jafc.6b00361

    Article  CAS  PubMed  Google Scholar 

  8. Zhong H, Liu Z, Zhang F, Zhou X, Sun X, Li Y, Liu W, Xiao H, Wang N, Lu H, Pan M, Wu X, Zhou Y (2022) Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine. Hortic Res 9:uhac103. https://doi.org/10.1093/hr/uhac103

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sanders RD, Boss PK, Capone DL, Kidman CM, Maffei S, Jeffery DW (2023) Methoxypyrazine concentrations in the grape bunch rachis of Vitis vinifera L. Cv Shiraz: influence of rootstock, region and light. Food Chem 408:135234. https://doi.org/10.1016/j.foodchem.2022.135234

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Chen H, Li Y, Du T, Jia J, Xi Z (2022) The expression of aroma components and related genes in Merlot and Marselan scion-rootstock grape and wine. Foods 11(18):2777. https://doi.org/10.3390/foods11182777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palai G, Caruso G, Gucci R, D’Onofrio C (2022) Deficit irrigation differently affects aroma composition in berries of Vitis vinifera L. (cvs Sangiovese and Merlot) grafted on two rootstocks. Aust J Grape Wine Res 28(4):590–606. https://doi.org/10.1111/ajgw.12562

    Article  CAS  Google Scholar 

  12. Jin Z-X, Sun T-Y, Sun H, Yue Q-Y, Yao Y-X (2016) Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Sci Hortic 210:130–137. https://doi.org/10.1016/j.scienta.2016.07.023

    Article  Google Scholar 

  13. Cheng J, Li H, Wang W, Duan C, Wang J, He F (2020) The influence of rootstocks on the scions’ aromatic profiles of Vitis vinifera L. cv. Chardonnay. Sci Hortic. https://doi.org/10.1016/j.scienta.2020.109517

    Article  Google Scholar 

  14. Rahman FU, Nawaz MA, Liu R, Sun L, Jiang J, Fan X, Liu C, Zhang Y (2022) Evaluation of volatile aroma compounds from Chinese wild grape berries by headspace-SPME with GC-MS. Food Sci Technol. https://doi.org/10.1590/fst.54320

    Article  Google Scholar 

  15. Yang C, Wang Y, Liang Z, Fan P, Wu B, Yang L, Li S (2009) Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chem 114(3):1106–1114. https://doi.org/10.1016/j.foodchem.2008.10.061

    Article  CAS  Google Scholar 

  16. Yang Y, Cuenca J, Wang N, Liang Z, Sun H, Gutierrez B, Xi X, Arro J, Wang Y, Fan P, Londo J, Cousins P, Li S, Fei Z, Zhong GY (2020) A key “foxy” aroma gene is regulated by homology-induced promoter indels in the iconic juice grape “Concord.” Hortic Res 7(1):67. https://doi.org/10.1038/s41438-020-0304-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji X, Wang B, Wang X, Wang X, Liu F, Wang H (2021) Differences of aroma development and metabolic pathway gene expression between Kyoho and 87–1 grapes. J Integr Agric 20(06):1525–1539. https://doi.org/10.1016/S2095-3119(20)63481-5

    Article  CAS  Google Scholar 

  18. Wang C, Xing J, Chin CK, Ho CT, Martin CE (2001) Modification of fatty acids changes the flavor volatiles in tomato leaves. Phytochemistry 58(2):227–232. https://doi.org/10.1016/s0031-9422(01)00233-3

    Article  CAS  PubMed  Google Scholar 

  19. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732. https://doi.org/10.1111/j.1365-313X.2008.03446.x

    Article  CAS  PubMed  Google Scholar 

  20. Lin J, Massonnet M, Cantu D (2019) The genetic basis of grape and wine aroma. Hortic Res 1(6):81. https://doi.org/10.1038/s41438-019-0163-1

    Article  Google Scholar 

  21. Choi K-O, Lee DH, Park SJ, Im D, Hur YY, Kim SJ (2020) Changes in biochemical and volatile flavor compounds of Shine Muscat at different ripening stages. Appl Sci 10:5661. https://doi.org/10.3390/app10165661

    Article  CAS  Google Scholar 

  22. Yin H, Wang L, Xi Z (2022) Involvement of anthocyanin biosynthesis of cabernet sauvignon grape skins in response to field screening and in vitro culture irradiating infrared radiation. J Agric Food Chem 70(40):12807–12818. https://doi.org/10.1021/acs.jafc.2c03838

    Article  CAS  PubMed  Google Scholar 

  23. Wang XC, Li AH, Dizy M, Ullah N, Sun WX, Tao YS (2017) Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Food Chem 1(228):550–559. https://doi.org/10.1016/j.foodchem.2017.01.113

    Article  CAS  Google Scholar 

  24. Yue X, Shi P, Tang Y, Zhang H, Ma X, Ju Y, Zhang Z (2021) Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine. J Sci Food Agric 101(9):3665–3675. https://doi.org/10.1002/jsfa.10996

    Article  CAS  PubMed  Google Scholar 

  25. Wang XJ, Tao YS, Wu Y, An RY, Yue ZY (2017) Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chem 1(226):41–50. https://doi.org/10.1016/j.foodchem.2017.01.007

    Article  CAS  Google Scholar 

  26. Martin DM, Chiang A, Lund ST, Bohlmann J (2012) Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta 236(3):919–929. https://doi.org/10.1007/s00425-012-1704-0

    Article  CAS  PubMed  Google Scholar 

  27. Zhang E, Chai F, Zhang H, Li S, Liang Z, Fan P (2017) Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chem 15(237):379–389. https://doi.org/10.1016/j.foodchem.2017.05.127

    Article  CAS  Google Scholar 

  28. Friedel M, Frotscher J, Nitsch M, Hofmann M, Bogs J, Stoll M (2016) Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera L. cv. riesling). Aust J Grape Wine R 22:409–421. https://doi.org/10.1111/ajgw.12229

    Article  CAS  Google Scholar 

  29. Tan W, Tang XP, Dong ZG, Li XM (2015) Analysis on fruit aromatic compounds of four seedless grape and their parents. J Fruit Sci 32:440–447 (in Chinese with English abstract)

    CAS  Google Scholar 

  30. Ghaste M, Narduzzi L, Carlin S, Vrhovsek U, Shulaev V, Mattivi F (2015) Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chem 1(188):309–319. https://doi.org/10.1016/j.foodchem.2015.04.056

    Article  CAS  Google Scholar 

  31. Günata Z, Bayonove C, Baumes R, Cordonnier R (1985) The aroma of grapes localisation and evolution of free and bound fractions of some grape aroma components cv. Muscat during first development and maturation. J Sci Food Agric 36:857–862. https://doi.org/10.1002/jsfa.2740360915

    Article  Google Scholar 

  32. Park SK, Morrison JC, Adams DO, Noble AC (1991) Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J Agric Food Chem 39:514–518. https://doi.org/10.1021/jf00003a017

    Article  CAS  Google Scholar 

  33. Williams PJ, Strauss CR, Wilson B, Massy-Westropp RA (1982) Novel monoterpene disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21:2013–2020. https://doi.org/10.1016/0031-9422(82)83034-3

    Article  CAS  Google Scholar 

  34. Mateo JJ, Jiménez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881(1–2):557–567. https://doi.org/10.1016/s0021-9673(99)01342-4

    Article  CAS  PubMed  Google Scholar 

  35. Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, Bitz O, Schwab W (2014) A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol 165(2):561–581. https://doi.org/10.1104/pp.113.232470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Li J, Huang M, Chen J (2015) Mechanisms for the influence of citrus rootstocks on fruit size. J Agric Food Chem 63(10):2618–2627. https://doi.org/10.1021/jf505843n

    Article  CAS  PubMed  Google Scholar 

  37. Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D (2014) Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem 15(165):282–289. https://doi.org/10.1016/j.foodchem.2014.04.120

    Article  CAS  Google Scholar 

  38. Liu HF, Wu BH, Fan PG, Li SH, Li LS (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agric 86:1526–1536. https://doi.org/10.1002/jsfa.2541

    Article  CAS  Google Scholar 

  39. Pangborn MR (1963) Relative taste intensities of selected sugars and organic acidsa. J Food Sci 28(6):726–733. https://doi.org/10.1111/j.1365-2621.1963.tb01680.x

    Article  Google Scholar 

  40. Li W, Yao H, Chen K, Ju Y, Min Z, Sun X, Cheng Z, Liao Z, Zhang K, Fang Y (2021) Effect of foliar application of fulvic acid antitranspirant on sugar accumulation, phenolic profiles and aroma qualities of Cabernet Sauvignon and Riesling grapes and wines. Food Chem 30(351):129308. https://doi.org/10.1016/j.foodchem.2021.129308

    Article  CAS  Google Scholar 

  41. Satisha J, Ramteke SD, Karibasappa GS (2016) Physiological and biochemical characterisation of grape rootstocks. South Afr J Enol Vitic. https://doi.org/10.21548/28-2-1470

    Article  Google Scholar 

  42. Li M, Yan X, Guo Z et al (2019) Rootstock influence on vegetative growth, yield, and fruit quality of ‘Petit Verdot.’ Eur J Hortic Sci 84(6):343–349. https://doi.org/10.17660/eJHS.2019/84.6.3

    Article  ADS  Google Scholar 

  43. Bianco RL, Farina V, Avellone G, Filizzola F, Agozzino P (2008) Fruit quality and volatile fraction of ‘Pink Lady’ apple trees in response to rootstock vigor and partial rootzone drying. J Sci Food Agric 88:1325–1334. https://doi.org/10.1002/jsfa.3210

    Article  CAS  Google Scholar 

  44. Benjamin G, Tietel Z, Porat R (2013) Effects of rootstock/scion combinations on the flavor of citrus fruit. J Agric Food Chem 61(47):11286–11294. https://doi.org/10.1021/jf402892p

    Article  CAS  PubMed  Google Scholar 

  45. Qian X, Sun L, Xu XQ, Zhu BQ, Xu HY (2017) Differential Expression of VvLOXA diversifies C6 volatile profiles in some Vitis vinifera table grape cultivars. Int J Mol Sci 18(12):2705. https://doi.org/10.3390/ijms18122705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Stella GM (2009) The 1-deoxy-D: -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118(4):653–669. https://doi.org/10.1007/s00122-008-0927-8

    Article  CAS  PubMed  Google Scholar 

  47. Costantini L, Kappel CD, Trenti M, Battilana J, Emanuelli F, Sordo M, Moretto M, Camps C, Larcher R, Delrot S, Grando MS (2017) Drawing links from transcriptome to metabolites: the evolution of aroma in the ripening berry of Moscato Bianco (Vitis vinifera L.). Front Plant Sci 8:780. https://doi.org/10.3389/fpls.2017.00780

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wen YQ, Zhong GY, Gao Y, Lan YB, Duan CQ, Pan QH (2015) Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol 6(15):240. https://doi.org/10.1186/s12870-015-0631-1

    Article  CAS  Google Scholar 

  49. Qian X, Xu XQ, Yu KJ, Zhu BQ, Lan YB, Duan CQ, Pan QH (2016) Varietal dependence of GLVs accumulation and LOX-HPL pathway gene expression in four Vitis vinifera wine grapes. Int J Mol Sci 17(11):1924. https://doi.org/10.3390/ijms17111924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalua CM, Boss PK (2009) Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.). J Agric Food Chem 57(9):3818–3830. https://doi.org/10.1021/jf803471n

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Key R&D Program of China (Grant number 2019YFD1000102-11) and the National Modern Agricultural Industry and Technology System Construction Project (CARS-29-ZP-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhumei Xi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Compliance with ethics requirements

This article does not contain any studies with animal subjects. All procedures performed in the process of Shine Muscat Grape grapes tasting involving human participants were in accordance with the ethical standards of the institutional.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, C., Li, Y. et al. Effects of cultivars as rootstocks on the expression of aroma components and related genes in Shine Muscat grape. Eur Food Res Technol 250, 1043–1059 (2024). https://doi.org/10.1007/s00217-023-04444-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04444-1

Keywords

Navigation