Skip to main content
Log in

Perspectives of non-equilibrium thermodynamics of calcium transport by caseins

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Transport by the milk of calcium hydrogen phosphate for biomineralization in next-generation mammals depends on intrinsically disordered casein proteins. Association of calcium to caseins is a two-step process with an initial fast bimolecular reaction with little temperature dependence followed by slower temperature-dependent rearrangements. Dissociation of calcium from caseins appears with negative energies of activation. Dissociation of calcium from caseins seems accordingly to go through different transition states and intermediates than association. Milk hydrogencitrate dissolves colloidal calcium phosphates spontaneously creating strong calcium citrate supersaturation. The degree of local supersaturation increases with decreasing temperature and can like the negative energy of activation seen for dissociation of calcium ions from casein micelles not be accommodated within traditional transition state theory. There is a need for rethinking the dynamics of the reversible calcium association to and dissociation from the caseins in calcium transport going beyond traditional transition state theory to develop novel dairy and non-dairy foods with increased calcium bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu X-C, Skibsted LH (2023) Citrate in calcium transport and biomineralization. Int Dairy J 139:105561

    Article  CAS  Google Scholar 

  2. Aenglong C, Wang YM, Limpawattana M, Sukketsiri W, Tang QJ, Klaypradit W (2022) Synthesis of soluble calcium compound from skipjack tuna bones using edible weak aids. LWT-Food Sci Technol 162:113460

    Article  CAS  Google Scholar 

  3. Aenglong C, Ngasakul N, Limpawattana M, Sukketsiri W, Chockchaisawasdee S, Stathopoulos C, Tanasawet S, Klaypradit W (2023) Characterization of novel calcium compounds from tilapia (Oreochromis niloticus) by-products and their effects on proliferation and differentiation of MC3T3-E1 cells. J Funct Foods 100:105361

    Article  CAS  Google Scholar 

  4. Lenton S, Wang Q, Nylander T, Teixeira S, Holt C (2020) Structural biology of calcium phosphate nanoclusters sequested by phosphoproteins. Crystals 10:755

    Article  CAS  Google Scholar 

  5. Holt C (2013) Unfolded phosphopolypeptides enable soft and hard tissues to coexist in the same organism with relative ease. Curr Opinion Struct Biolog 23:420–425

    Article  CAS  Google Scholar 

  6. Antunes IC, Bexiga R, Pinto C, Roseiro LC, Quaresma MAG (2023) Cow’s milk in human nutrition and the emergence of plant-based milk alternatives. Foods 12:99

    Article  CAS  Google Scholar 

  7. Horne DS (1982) Calcium induced precipitation of αs,1 casein: Effect of inclusion of citrate or phosphate. J Dairy Res 49:107–118

    Article  CAS  Google Scholar 

  8. Horne DS (2023) Comment on “Deciphering calcium binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation by N. Luo, J. Xiao, S. Sun, F. Cui, G. Liui and Y. Cao, Food Funct. 2020, 11, 5284.” Food Funct 14:2270–2271

    Article  CAS  PubMed  Google Scholar 

  9. Liu X–C, JiangAhrné YLM, Skibsted LH (2022) Temperature effects on calcium binding to caseins. Food Res Int 154:110981

    Article  CAS  PubMed  Google Scholar 

  10. Liu X–C, LiuSkibsted JLH (2022) Temperature effects on calcium binding to aspartate and glutamate. Food Res Int 159:111625

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Xue Z, Wang X, Xu D (2022) Molecular dynamics simulation of biomimetic biphasic calcium phosphate nanoparticles. J Phys Chem B 126:9726–9736

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Barone G, Rauh V, Lillevang SK, Skibsted LH, Ahrné L (2023) Temperature effects on calcium partition kinetics in pasteurized skim milk. Int Dairy J 137:105518

    Article  CAS  Google Scholar 

  13. Toto A, Malagrinò F, Nardella C, Pennacchie HV, Pagano L, Santorelli D, Diop W, Gianni S (2022) Characterization of early and late transition states of the folding pathway of a SH2 domain. Protein Sci 31:e4332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gindele MB, Malaszuk KK, Peter C, Gebauer D (2022) On the binding mechanisms of calcium ions to polycarboxylates: Effects of molecular weight, side chain, and backbone chemistry. Langmuir 38:14409–14421

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Tang N, Cheng Y (2023) Understanding the factors influencing the ability of calcium binding peptides to promote calcium absorption. ACS Food Sci Technol 3:499–513

    Article  CAS  Google Scholar 

  16. Vavrusova M, Garcia AC, Davidsen BP, Skibsted LH (2017) Spontaneous supersaturation of calcium citrate from simultaneous isothermal dissolution of sodium citrate and sparingly soluble hydroxycarboxylates in water. RSC Adv 7:3078

    Article  CAS  Google Scholar 

  17. Daniloski D, McCarthy NA, Auldist MJ, Vasiljevic T (2022) Properties of sodium caseinate as affected by the β-casein phenotypes. J Coll Interf Sci 626:939–950

    Article  CAS  Google Scholar 

  18. Jiang Y, Liu X–C, de ZawadskiSkibsted ALH (2021) Binding of calcium to L-serine and o-phospho-L-serine as affected by temperature, pH and ionic strength under milk processing conditions. Int Dairy J 112:104875

    Article  CAS  Google Scholar 

  19. Liu X–C, Hansen JS, Skibsted LH (2022) Partial equilibration during dissolution of calcium hydrogen phosphate in aqueous hydrogen citrate: mechanism behind spontaneous supersaturation increasing calcium bioaccessibility. Eur Food Res Tech 248:3015

    Article  CAS  Google Scholar 

  20. Razdan NK, Liu TC, Bhan A (2023) Concepts relevant for the kinetic analysis of reversible reactions. Chem Rev 123:2950–3006

    Article  CAS  PubMed  Google Scholar 

  21. Takagi H, Nakano T, Aoki T, Tanimoto M (2023) The structural changes of a bovine casein micelle during temperature change; in situ observation over a wide spatial scale from nano to micrometer. Soft Matter 19:4562–4576

    Article  CAS  PubMed  Google Scholar 

  22. Reiter M, Reitmar M, Kulozik U (2022) Colloidal properties of casin micelles at threefold and natural concentrations upon calcium or chelator addition: Implication for binding of water and calcium. ACS Food Sci Technol 2:1840

    Article  CAS  Google Scholar 

  23. Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y (2023) Study on internal structure of casein micelles in reconstituted skim milk powder. Inter J Biolog Macromol 224:437–452

    Article  CAS  Google Scholar 

  24. Rodrigo MM, Ribeiro ACF, Verissimo LMP, Esteso MA, Leaist DG (2019) Coupled diffusion in aqueous citric acid + calcium citrate solutions. J Chem Thermodyn 131:314–321

    Article  CAS  Google Scholar 

  25. Cheng H, Garcia AH, Tang N, Danielsen BP, Skibsted LH (2018) Combinations of isocitrate and citrate enhance calcium salt solubility and supersaturation robustness. Int Dairy J 85:225–236

    Article  CAS  Google Scholar 

  26. Liu X, Hong C, Ren H, Wang B, Li X, Peng S, Zhang Q, Yuan Y (2023) Effects of ATP on the physicochemical properties of cytocompatibility of calcium sulfate/calcium citrate composite cement. Materials 16:3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H, Falcoz S, Morales J, Berteau J–P (2023) Investigation of bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 25:9336–9348

    Article  CAS  PubMed  Google Scholar 

  28. Liu X–C, Skibsted LH (2022) Advances in understanding milk salts. In: Huppertz T, Vasiljevi T (eds) Understanding and improving the functional and nutritional properties of milk. Burleigh Dodds Science Publishing Limited, pp 443–470

    Google Scholar 

  29. An J, Zhang X, Ying Z, Li H, Lin W, Wang J, Liu X (2022) The formation, structural characteristics, absorption pathways and bioavailability of calcium-peptide chelates. Foods 11:2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foley BL, Bhan A (2020) Degree of rate control and De Donder relations—an interpretation based on transition state theory. J Catal 384:231–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif H. Skibsted.

Ethics declarations

Conflict of interest

The author does not have any conflicts of interest.

Compliance with ethics requirements

There is no ethical situation related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibsted, L.H. Perspectives of non-equilibrium thermodynamics of calcium transport by caseins. Eur Food Res Technol 250, 15–20 (2024). https://doi.org/10.1007/s00217-023-04380-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04380-0

Keywords

Navigation