Skip to main content

Advertisement

Log in

Development of a TaqMan real-time PCR assay with an internal amplification control for detecting trace amounts of allergenic mango (Mangifera indica) in commercial food products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Mango (Mangifera indica) is a widely enjoyed tropical fruit that is rich in numerous nutrients, but it is also a common allergenic fruit that can induce anaphylactic shock in some mango-sensitized individuals. To protect allergic consumers, a TaqMan real-time PCR is developed herein by targeting the major mango allergen GAPDH gene to identify mango in foods. To prevent interference by other ingredients in the foods, an internal amplification control (IAC) is established and incorporated into the developed qPCR. Under the optimized assay conditions, the developed assay can detect mango genomic DNA down to 10 pg/μL and effectively differentiate mango from 21 other fruits and vegetables. In the incurred assay, the developed qPCR has a limit of detection (LOD) of 10 μg/g and 330 μg/g of mango powder in juice and cookie, respectively. The assay exhibits a board spectrum, successfully detecting six mango cultivars, and has good accuracy and precision as calculated intra- and inter-assay CV values < 10%. Forty commercial processed foods were simultaneously analyzed using the developed method and a qPCR method that is officially recognized by the Taiwan FDA. The sensitivity and specificity of this assay were estimated to be 85% and 100%, respectively, based on the ingredient labeling of these products. Hence, this developed qPCR is an effective method for screening mango in processed foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133(2):291–307. https://doi.org/10.1016/j.jaci.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  2. Loh W, Tang ML (2018) The epidemiology of food allergy in the global context. Int J Environ Res Public Health 15(9):2043. https://doi.org/10.3390/ijerph15092043

    Article  PubMed  PubMed Central  Google Scholar 

  3. FDA. Food allergies. https://www.fda.gov/food/food-labeling-nutrition/food-allergies. Accessed 5 Jun 2023

  4. World Health Organization (2022) Risk assessment of food allergens. Part 1: review and validation of Codex Alimentarius priority allergen list through risk assessment: Meeting report. https://www.fao.org/3/cb9070en/cb9070en.pdf Accessed 5 Jun 2023

  5. Fernández-Rivas M (2015) Fruit and vegetable allergy. In Food Allergy: Molecular Basis and Clinical Practice 101:162–170. https://doi.org/10.1159/000375469

    Article  CAS  Google Scholar 

  6. Hassan AK, Venkatesh YP (2015) An overview of fruit allergy and the causative allergens. Eur Ann Allergy Clin Immunol 47(6):180–187. DOI: https://doi.org/10.12688/f1000research.109080.2

  7. Gabrielli S, Clarke AE, Morris J, Gravel J, Lim R, Chan ES, Goldman RD, O’Keefe A, Gerdts J, Chu DK, Upton J, Hochstadter E, Moisan J, Bretholz A, McCusker C, Zhang X, Protudjer JL, Abrams EM, Simons E, Ben-Shoshan M (2021) Fruit-induced anaphylaxis: clinical presentation and management. Allergy Clin Immunol Pract 9(7):2825–2830. https://doi.org/10.1016/j.jaip.2021.02.055

    Article  CAS  Google Scholar 

  8. Costa J, Mafra I (2022) Rosaceae food allergy: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2045897

    Article  PubMed  Google Scholar 

  9. Sareen R, Shah A (2011) Hypersensitivity manifestations to the fruit mango. Asia Pac Allergy 1(1):43–49. https://doi.org/10.5415/apallergy.2011.1.1.43

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hegde VL, Venkatesh YP (2007) Anaphylaxis following ingestion of mango fruit. J Investig Allergol Clin Immunol 17(5):341–344

    CAS  PubMed  Google Scholar 

  11. Ukleja-Sokołowska N, Gawrońska-Ukleja E, Lis K, Żbikowska-Gotz M, Sokołowski Ł, Bartuzi Z (2018) Anaphylactic reaction in patient allergic to mango. Allergy Asthma Clin Immunol 14:78. https://doi.org/10.1186/s13223-018-0294-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta D, Dagar A, Kishan J, Singh P, Nehra T, Sharma H (2018) Common allergens prevalent in and around ambala, haryana: an intradermal study among patients with asthma and allergic rhinitis and atopic dermatitis. Indian J Dermatol 63(4):311–316. https://doi.org/10.4103/ijd.IJD_438_17

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun X, Zhao J, Wang Q, Shi G, Yang J, Ming L (2019) Prevalence of allergen sensitization among 15,534 patients with suspected allergic diseases in Henan Province, China. Asian Pac J Allergy Immunol 37(2):57–64. https://doi.org/10.12932/AP-160817-0137

    Article  PubMed  Google Scholar 

  14. Kiguchi T, Yamamoto-Hanada K, Saito-Abe M, Sato M, Irahara M, Ogita H, Miyagi Y, Inuzuka Y, Toyokuni K, Nishimura K, Ishikawa F, Miyaji Y, Kabashima S, Fukuie T, Narita M, Ohya Y (2021) Pollen-food allergy syndrome and component sensitization in adolescents: a Japanese population-based study. PLoS ONE 16(4):e0249649. https://doi.org/10.1371/journal.pone.0249649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu TC, Tsai TC, Huang CF, Chang FY, Lin CC, Huang IF, Chu CH, Lau BH, Wu L, Peng HJ, Tang RB (2012) Prevalence of food allergy in Taiwan: a questionnaire-based survey. Intern Med J 42(12):1310–1315. https://doi.org/10.1111/j.1445-5994.2012.02820.x

    Article  PubMed  Google Scholar 

  16. Li SK, Liu Z, Huang CK, Wu TC, Huang CF (2022) Prevalence, clinical presentation, and associated atopic diseases of pediatric fruit and vegetable allergy: a population-based study. Pediatr neonatol 63(5):520–526. https://doi.org/10.1016/j.pedneo.2022.03.019

    Article  PubMed  Google Scholar 

  17. Paschke A, Kinder H, Zunker K, Wigotzki M, Weßbecher R, Vieluf D, Steinhart H (2001) Characterization of allergens in mango fruit and ripening dependence of the allergenic potency. Food Agric Immunol 13(1):51–61. https://doi.org/10.1080/09540100051074220

    Article  CAS  Google Scholar 

  18. Tsai WC, Wu TC, Chiang BL, Wen HW (2017) Cloning, expression, and purification of recombinant major mango allergen Man i 1 in Escherichia coli. Protein Expr Purif 130:35–43. https://doi.org/10.1016/j.pep.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  19. Sander I, Rozynek P, Rihs HP, Van Kampen V, Chew FT, Lee WS, Kotschy-Lang N, Merget R, Brüning T, Raulf-Heimsoth M (2011) Multiple wheat flour allergens and cross-reactive carbohydrate determinants bind IgE in baker’s asthma. Allergy 66(9):1208–1215. https://doi.org/10.1111/j.1398-9995.2011.02636.x

    Article  CAS  PubMed  Google Scholar 

  20. Benndorf D, Müller A, Bock K, Manuwald O, Herbarth O, Von Bergen M (2008) Identification of spore allergens from the indoor mould Aspergillus versicolor. Allergy 63(4):454–460. https://doi.org/10.1111/j.1398-9995.2007.01603.x

    Article  CAS  PubMed  Google Scholar 

  21. Asero R, Pravettoni V, Scala E, Villalta D (2020) House dust mite-shrimp allergen interrelationships. Curr Allergy Asthma Rep 20(4):9. https://doi.org/10.1007/s11882-020-0902-2

    Article  PubMed  Google Scholar 

  22. Ruethers T, Taki AC, Karnaneedi S, Nie S, Kalic T, Dai D, Daduang S, Leeming M, Williamson NA, Breiteneder H, Mehr SS, Kamath SD, Campbell DE, Lopata AL (2021) Expanding the allergen repertoire of salmon and catfish. Allergy 76(5):1443–1453. https://doi.org/10.1111/all.14574

    Article  CAS  PubMed  Google Scholar 

  23. Song J, Zhang H, Liu Z, Ran P (2008) Mango profilin: cloning, expression and cross-reactivity with birch pollen profilin Bet v 2. Mol Biol Rep 35(2):231–237. https://doi.org/10.1007/s11033-007-9075-5

    Article  CAS  PubMed  Google Scholar 

  24. DunnGalvin A, Chan CH, Crevel R, Grimshaw K, Poms R, Schnadt S, Taylor SL, Turner P, Allen KJ, Austin M, Baka A, Baumert JL, Baumgartner S, Beyer K, Bucchini L, Fernández-Rivas M, Grinter K, Houben GF, Hourihane J, Kenna F, Kruizinga AG, Lack G, Madsen CB, Mills EN, Papadopoulos NG, Alldrick A, Regent L, Sherlock R, Wal JM, Roberts G (2015) Precautionary allergen labelling: perspectives from key stakeholder groups. Allergy 70(9):1039–1051. https://doi.org/10.1111/all.12614

    Article  CAS  PubMed  Google Scholar 

  25. Senyuva HZ, Jones IB, Sykes M, Baumgartner S (2019) A critical review of the specifications and performance of antibody and DNA-based methods for detection and quantification of allergens in foods. Food Addit Contam Part A 36(4):507–547. https://doi.org/10.1080/19440049.2019.1579927

    Article  CAS  Google Scholar 

  26. López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D (2020) Current trends in proteomic advances for food allergen analysis. Biology 9(9):247. https://doi.org/10.3390/biology9090247

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsai WC, Yin HY, Chen SN, Chang HC, Wen HW (2021) Development of monoclonal antibody-based sandwich ELISA for detecting major mango allergen Man i1 in processed foods. J Food Saf 41(2):e12884. https://doi.org/10.1111/jfs.12884

    Article  CAS  Google Scholar 

  28. Tsai WC, Yin HY, Lin YT, Liu HJ, Tseng CY, Wen HW (2021) A rapid lateral flow assay using immunomagnetic nanoparticles for detecting mango allergen residues in processed foods. J Food Saf 41(6):e12929. https://doi.org/10.1111/jfs.12929

    Article  CAS  Google Scholar 

  29. Holzhauser T (2018) Protein or no protein? Opportunities for DNA-based detection of allergenic foods. J Agric Food Chem 66(38):9889–9894. https://doi.org/10.1021/acs.jafc.8b03657

    Article  CAS  PubMed  Google Scholar 

  30. Melinte G, Hosu O, Cristea C, Marrazza G (2022) DNA sensing technology a useful food scanning tool. TrAC. https://doi.org/10.1016/j.trac.2022.116679

    Article  Google Scholar 

  31. Herrero B, Vieites JM, Espiñeira M (2012) Fast real-time PCR for the detection of crustacean allergen in foods. J Agric Food Chem 60(8):1893–1897. https://doi.org/10.1021/jf2043532

    Article  CAS  PubMed  Google Scholar 

  32. Linacero R, Ballesteros I, Sanchiz A, Prieto N, Iniesto E, Martinez Y, Pedrosa MM, Muzquiz M, Cabanillas B, Rovira M, Burbano C, Cuadrado C (2016) Detection by real time PCR of walnut allergen coding sequences in processed foods. Food Chem 202:334–340. https://doi.org/10.1016/j.foodchem.2016.01.132

    Article  CAS  PubMed  Google Scholar 

  33. Iniesto E, Jiménez A, Prieto N, Cabanillas B, Burbano C, Pedrosa MM, Rodríguez J, Muzquiz M, Crespo JF, Cuadrado C, Linacero R (2013) Real Time PCR to detect hazelnut allergen coding sequences in processed foods. Food Chem 138(2–3):1976–1981. https://doi.org/10.1016/j.foodchem.2012.11.036

    Article  CAS  PubMed  Google Scholar 

  34. López-Calleja IM, de la Cruz S, Pegels N, González I, García T, Martín R (2013) Development of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. Food Control 30(2):480–490. https://doi.org/10.1016/j.foodcont.2012.09.017

    Article  CAS  Google Scholar 

  35. Sanchiz Á, Ballesteros I, Marqués E, Dieguez M, Rueda J, Cuadrado C, Linacero R (2018) Evaluation of locked nucleic acid and TaqMan probes for specific detection of cashew nut in processed food by real time PCR. Food Control 89:227–234. https://doi.org/10.1016/j.foodcont.2018.02.021

    Article  CAS  Google Scholar 

  36. Sanchiz Á, Ballesteros I, López-García A, Ramírez A, Rueda J, Cuadrado C, Linacero R (2020) Chestnut allergen detection in complex food products: development and validation of a real-time PCR method. LWT 123:109067. https://doi.org/10.1016/j.lwt.2020.109067

    Article  CAS  Google Scholar 

  37. Linacero R, Sanchiz A, Ballesteros I, Cuadrado C (2020) Application of real-time PCR for tree nut allergen detection in processed foods. Crit Rev Food Sci Nutr 60(7):1077–1093. https://doi.org/10.1080/10408398.2018.1557103

    Article  CAS  PubMed  Google Scholar 

  38. Sanchiz A, Sánchez-Enciso P, Cuadrado C, Linacero R (2021) Detection of peanut allergen by Real-Time PCR: looking for a suitable detection marker as affected by processing. Foods (Basel, Switzerland) 10(6):1421. https://doi.org/10.3390/foods10061421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Method of Test for Plant-Derived Ingredients in Foods Qualitative Test of Mango Ingredients (2013) Taiwan Food and Drug Administration (TFDA), Taipei. https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694248527946380&type=2&cid=1737. Accessed 7 Jun 2023

  40. Peters RP, van Agtmael MA, Gierveld S, Danner SA, Groeneveld AB, Vandenbroucke-Grauls CM, Savelkoul PH (2007) Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J Clin Microbiol 45(11): 3641–3646. https://doi.org/10.1128/JCM.01056-07

  41. Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20(22):6115–6116. https://doi.org/10.1093/nar/20.22.6115

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pafundo S, Gullì M, Marmiroli N (2011) Comparison of DNA extraction methods and development of duplex PCR and real-time PCR to detect tomato, carrot, and celery in food. J Agric Food Chem 59(19):10414–10424. https://doi.org/10.1021/jf202382s

    Article  CAS  PubMed  Google Scholar 

  43. Parker JD, Rabinovitch PS, Burmer GC (1991) Targeted gene walking polymerase chain reaction. Nucleic Acids Res 19(11):3055–3060. https://doi.org/10.1093/nar/19.11.3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang P, Luo Y, Huang J, Gao S, Zhu G, Dang Z, Gai J, Yang M, Zhu M, Zhang H, Ye X, Gao A, Tan X, Wang S, Wu S, Cahoon EB, Bai B, Zhao Z, Li Q, Wei J, Chen H, Luo R, Gong D, Tang K, Chen Y (2020) The genome evolution and domestication of tropical fruit mango. Genome Biol 21(1):60. https://doi.org/10.1186/s13059-020-01959-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG (1998) Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 36(3):618–623. https://doi.org/10.1128/jcm.36.3.618-623.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siebert PD, Larrick JW (1993) PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 14(2):244–249

    CAS  PubMed  Google Scholar 

  47. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523. https://doi.org/10.1093/nar/7.6.1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P (2013) Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Front Plant Sci 4:450. https://doi.org/10.3389/fpls.2013.00450

    Article  PubMed  PubMed Central  Google Scholar 

  49. Martins RP, Leach RE, Krawetz SA (2001) Whole-body gene expression by data mining. Genomics 72(1):34–42. https://doi.org/10.1006/geno.2000.6437

    Article  CAS  Google Scholar 

  50. Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quantif 14:19–28. https://doi.org/10.1016/j.bdq.2017.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42(5):1863–1868. https://doi.org/10.1128/jcm.42.5.1863-1868.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. John ME (1992) An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res 20(9):2381. https://doi.org/10.1093/nar/20.9.2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abramo MD, Castellazzi CL, Orozco M, Amadei A (2013) On the nature of DNA hyperchromic effect. J Phys Chem B 117:8697–8704. https://doi.org/10.1021/jp403369k

    Article  CAS  PubMed  Google Scholar 

  54. Puchooa D (2004) A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr J Biotechnol 3(4):253–255. https://doi.org/10.5897/AJB2004.000-2046

    Article  CAS  Google Scholar 

  55. Yee W, Abdul-Kadir R, Lee LM, Koh B, Lee YS, Chan HY (2018) A simple and inexpensive physical lysis method for DNA and RNA extraction from freshwater microalgae. 3 Biotech 8:354. https://doi.org/10.1007/s13205-018-1381-1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors–occurrence, properties and removal. J Appl Microbiol 113(5):1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

    Article  CAS  PubMed  Google Scholar 

  57. López-Andreo M, Aldeguer M, Guillén I, Gabaldón JA, Puyet A (2012) Detection and quantification of meat species by qPCR in heat-processed food containing highly fragmented DNA. Food Chem 134(1):518–523. https://doi.org/10.1016/j.foodchem.2012.02.111

    Article  CAS  Google Scholar 

  58. Sidstedt M, Rådström P, Hedman J (2020) PCR inhibition in qPCR, dPCR and MPS—mechanisms and solutions. Anal Bioanal Chem 412(9):2009–2023. https://doi.org/10.1007/s00216-020-02490-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lefever S, Pattyn F, Hellemans J, Vandesompele J (2013) Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem 59(10):1470–1480. https://doi.org/10.1373/clinchem.2013.203653

    Article  CAS  PubMed  Google Scholar 

  60. Rejali NA, Moric E, Wittwer CT (2018) The effect of single mismatches on primer extension. Clin Chem 64(5):801–809. https://doi.org/10.1373/clinchem.2017.282285

    Article  CAS  PubMed  Google Scholar 

  61. Jelliffe RW, Schumitzky A, Bayard D, Fu X, Neely M (2015) Describing assay precision—reciprocal of variance is correct, not CV percent: its use should significantly improve laboratory performance. Ther Drug Monit 37(3):389–394. https://doi.org/10.1097/FTD.0000000000000168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under the contract MOST 107-2320-B-005-011-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Wei Wen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest among them.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, HY., Liu, YF., Lin, YY. et al. Development of a TaqMan real-time PCR assay with an internal amplification control for detecting trace amounts of allergenic mango (Mangifera indica) in commercial food products. Eur Food Res Technol 249, 2647–2660 (2023). https://doi.org/10.1007/s00217-023-04310-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04310-0

Keywords

Navigation