Skip to main content
Log in

An evaluation of the chemical composition and biological properties of Anatolian Royal Jelly, drone brood and queen bee larvae

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Therapeutic properties of products such as propolis, pollen and bee venom have been investigated before, but studies about the biological properties of drone brood (DBL) and queen bee larvae (QBL) are very limited. In addition, there are many factors that affect the biological activity power of royal jelly (RJ). This study was carried out to evaluate the antibacterial and antioxidant activity, total phenolic (TPC) and protein content and 10-hydroxy-2-decenoic acid (10-HDA) amount of Anatolian RJ, DBL and QBL. As a result of Folin–Ciocalteu method, there were significant differences between the samples, and the highest value was obtained from the QBL. Bradford Coomassie Brilliant Blue method results showed that QBL had most abundant total protein content while RJ had the lowest amount. According to the HPLC analysis RJ showed the highest 10-HDA amounts, while DBL had the lowest. When the antioxidant activity values were evaluated together, it was understood that the antioxidant capacity of DBL and QBL is significantly higher than RJ. When the data were evaluated statistically, both differences and negative and positive correlations were obtained between the parameters. As a result of MIC experiment Mycobacterium smegmatis was the most susceptible bacterium. DBL and QBL samples did not show any antimicrobial activity against selected microorganisms. This is the first study that focuses on the biological properties of QBL. As a result, Anadolu RJ is promising candidates for the treatment of some infectious diseases, and DBL and QBL are promising candidates for the development of products that can be used as food supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Basualdo C, Sgroy V, Finola MS, Marioli JM (2007) Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet Microbiol 124(3–4):375–381

    Article  CAS  PubMed  Google Scholar 

  2. Kekecoglu M, Sönmez E, Kambur Acar M, Alpay Karaoglu S (2021) Pollen analysis chemical composition and antibacterial activity of anatolian chestnut propolis collected from Yıgılca region. Biol Bull 48(6):721–728

    Article  Google Scholar 

  3. Eshraghi S (2005) An evaluation of the potent inhibitory effects of royal jelly fractions against Streptomyces bacteria. Pak J Med Sci 21(1):63–68

    Google Scholar 

  4. Sonmez E, Kekecoglu M, Bozdeveci A, Karaoglu SA (2022) Chemical profiling and antimicrobial effect of Anatolian honey bee venom. Toxicon 213:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Romero C, Chopin S, Back G, Martinez E, Garcia M, Bixby L (2005) Antibacterial properties of common herbal medicines of the southwest. J Ethnopharmacol 99:253–257

    Article  PubMed  Google Scholar 

  6. Sauerwald N, Polster J, Bengsch E, Niessen L, Vogel RF (1998) Combined antibacterial and antifungal properties of water soluble fractions of royal jelly. Adv Food Sci (CMTL) 20(1/2):46–52

    CAS  Google Scholar 

  7. Melliou E, Chinou I (2005) Chemistry and bioactivity of royal jelly from Greece. J Agric Food Chem 53:8987–8992

    Article  CAS  PubMed  Google Scholar 

  8. Sabatini AG, Marcazzan GL, Caboni MF, Bogdanov S, de Almeida-Muriadian LB (2009) Quality and standardisation of royal jelly. JAAS 1:1–6

    Google Scholar 

  9. Scarselli R, Donadio E, Giuffrida MG, Fortunato D, Conti A, Balestreri E, Felicioli R, Pinzauti M, Sabatini AG, Felicioli A (2005) Toward royal jelly proteome. Proteomics 5:769–776

    Article  CAS  PubMed  Google Scholar 

  10. Ramadan MF, Al-Ghamdi A (2012) Bioactive compounds and health-promoting properties of royal jelly: a review. J Funct Foods 4:39–52

    Article  CAS  Google Scholar 

  11. Coutinho D, Karibasappa SN, Mehta DS (2018) Royal jelly antimicrobial activity against periodontopathic bacteria. J Interdiscip Dent 8(1):18–22

    Article  Google Scholar 

  12. Park HG, Kim BY, Park MJ, Deng Y, Choi YS, Lee KS, Jin BR (2019) Antibacterial activity of major royal jelly proteins of the honeybee (Apis mellifera) royal jelly. J Asia-Pac Entomol 22(3):737–741

    Article  Google Scholar 

  13. García MC, Finola MS, Marioli JM (2010) Antibacterial activity of royal jelly against bacteria capable of infecting cutaneous wounds. JAAS 2(3):93–99

    Google Scholar 

  14. Fratini F, Cilia G, Mancini S, Felicioli A (2016) Royal jelly: an ancient remedy with remarkable antibacterial properties. Microbiol Res 192:130–141

    Article  CAS  PubMed  Google Scholar 

  15. Gismondi A, Trionfera E, Canut L, Di Marco G, Canini A (2017) Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol Rep 38(3):1833–1844

    Article  CAS  PubMed  Google Scholar 

  16. Isidorov VA, Czyżewska U, Isidorova AG, Bakier S (2009) Gas chromatographic and mass spectrometric characterization of the organic acids extracted from some preparations containing lyophilized royal jelly. J Chromatogr B 877(29):3776–3780

    Article  CAS  Google Scholar 

  17. Fujita T, Kozuka-Hata H, Ao-Kondo H, Kunieda T, Oyama M, Kubo T (2013) Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. J Proteome Res 12(1):404–411

    Article  CAS  PubMed  Google Scholar 

  18. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  19. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P&T 40(4):277

    Google Scholar 

  20. Mohammad FH, Koohsarı H, Ghaboos SH (2022) Antibacterial and antioxidant activity of royal jelly collected from geographical regions with different climates in the North of Iran. Bulg J Vet Med 25(3):1–14

    Google Scholar 

  21. El-Guendouz S, Machado AM, Aazza S, Lyoussi B, Miguel MG, Mateus MC, Figueiredo AC (2020) Chemical characterization and biological properties of royal jelly samples from the Mediterranean area. Nat Prod Commun 15(2):1934578X20908080

    CAS  Google Scholar 

  22. Mbata KJ (1995) Traditional use of arthropods in Zambia. Food Insects Newsl 8(1):5–7

    Google Scholar 

  23. Onore GA (1997) A brief note on edible insects in Ecuador. Ecol Food Nutr 36:277–285

    Article  Google Scholar 

  24. Lou ZY (1997) Insects as food in China. Ecol Food Nutr 36:201–207

    Article  Google Scholar 

  25. Jensen AB, Evans J, Jonas-Levi A, Benjamin O, Martinez I, Dahle B, Roos N, Lecocq A, Foley K (2019) Standard methods for Apis mellifera brood as human food. J Apic Res 58:1–28

    Article  Google Scholar 

  26. Sawczuk R, Karpinska J, Miltyk W (2019) What do we need to know about drone brood homogenate and what is known. J Ethnopharmacol 245:111–581

    Article  Google Scholar 

  27. Matsuka M, Watabe N, Takeuchi K (1973) Analysis of the food of larval drone honeybees. J Apic Res 12(1):3–7

    Article  CAS  Google Scholar 

  28. Mărgăoan R, Mărghıtaş LA, Dezmırean DS, Bobış O, Bonta V, Cătană C, Urcan A, Muresan CI, Margın MG (2017) Comparative study on quality parameters of royal jelly, DBL and queen bee larvae triturate. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 74(1):51–58

    Google Scholar 

  29. Ghosh S, Sohn HY, Pyo SJ, Jensen AB, Meyer-Rochow VB, Jung C (2020) Nutritional composition of Apis mellifera drones from Korea and Denmark as a potential sustainable alternative food source: Comparison between developmental stages. Foods 9(4):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong D, Dong M, Liu K, Lu Y, Yu B (2018) Antioxidant activity of queen bee larvae processed by enzymatic hydrolysis. J Food Process Preserv 42(2):e13461

    Article  Google Scholar 

  31. Matsuoka T, Kawashima T, Nakamura T, Kanamaru Y, Yabe T (2012) Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie 43:685–697

    Article  CAS  Google Scholar 

  32. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G (2018) Oxidative stress, aging and disease. Clin Interv Aging 13:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15(5):1–10

    Article  CAS  Google Scholar 

  34. Nabas Z, Haddadin MS, Haddadin J, Nazer IK (2014) Chemical composition of royal jelly and effects of synbiotic with two different locally isolated probiotic strains on antioxidant activities. Pol J Food Nutr Sci 64(3):171–180

    Article  CAS  Google Scholar 

  35. Liu JR, Yang YC, Shi LS, Peng CC (2008) Antioxidant properties of royal jelly associated with larval age and time of harvest. J Agric Food Chem 56(23):11447–11452

    Article  CAS  PubMed  Google Scholar 

  36. Sidor E, Miłek M, Tomczyk M, Dżugan M (2021) Antioxidant activity of frozen and freeze-dried drone brood homogenate regarding the stage of larval development. Antioxidants 10(5):639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim J, Lee J (2010) Quantitative analysis of trans10hydroxy-2-decenoic acid in royal jelly products purchased in USA by high-performance liquid chromatography. J Apic Sci 54(1):77–85

    Google Scholar 

  38. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. AJEV 16(3):144–158

    CAS  Google Scholar 

  39. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J sci technol 26(2):211–219

    CAS  Google Scholar 

  40. Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay, direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  41. Özkök D, Silici S (2017) Antioxidant activities of honeybee products and their mixtures. Food Sci Biotechnol 26(1):201–206

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pavel CI, Mărghitaş LA, Dezmirean DS, Tomoş LI, Bonta V, Şapcaliu A, Buttstedt A (2014) Comparison between local and commercial royal jelly—use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter. J Apic Res 53(1):116–123

    Article  Google Scholar 

  43. Fontana R, Mendes MA, De Souza BM, Cono K, César LMM, Malaspina O, Palma MS (2004) Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 25:919–928

    Article  CAS  PubMed  Google Scholar 

  44. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (2004) A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. Peptides 25:919–928

    Google Scholar 

  45. Kanelis D, Tananaki C, Liolios V, Dimou M, Goras G, Rodopoulou MA, Karazafiris E, Thrasyvoulou AA (2015) Suggestion for royal jelly specifications. Arh Hig Rada Toksikol 66(4):275–284

    Article  PubMed  Google Scholar 

  46. Martinello M, Mutinelli F (2021) Antioxidant activity in bee products: a review. Antioxidants 10(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo H, Kouzuma Y, Yonekura M (2009) Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem 113(1):238–245

    Article  CAS  Google Scholar 

  48. Kosińska A, Karamać M, Penkacik K, Urbalewicz A, Amarowicz R (2011) Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. Eur Food Res Technol 233(2):213–222

    Article  Google Scholar 

  49. Buratti S, Benedetti S, Cosio MS (2007) Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta 71(3):1387–1392

    Article  CAS  PubMed  Google Scholar 

  50. Mokaya HO, Njeru LK, Lattorff HMG (2020) African honeybee royal jelly: phytochemical contents, free radical scavenging activity, and physicochemical properties. Food Biosci 37:100733

    Article  CAS  Google Scholar 

  51. Kolayli S, Sahin H, Can Z, Yildiz O, Malkoc M, Asadov A (2016) A member of complementary medicinal food: Anatolian royal jellies, their chemical compositions, and antioxidant properties. J Evid Based Complement Altern Med 21(4):3–8

    Article  Google Scholar 

  52. Nagai T, Sakai M, Inoue R, Inoue H, Suzuki N (2001) Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem 75(2):237–240

    Article  CAS  Google Scholar 

  53. Yucel B, Sahin H, Yıldız O, Kolaylı S (2019) Bioactive components and effect mechanism of Apilarnil. J Anim Prod 60(2):125–130

    Google Scholar 

  54. Silici S (2019) Chemical content and bioactive properties of drone larvae (Apilarnil). Mellifera 19(2):14–22

    Google Scholar 

  55. Yavuz I, Gurel F (2017) Chemical properties of the royal jellies in Turkish markets. Mediterr Agric Sci 30(3):281–285

    Google Scholar 

  56. Kamyab S, Gharachorloo M, Honarvar M, Ghavami M (2020) Quantitative analysis of bioactive compounds present in Iranian royal jelly. J Apic Res 59(1):42–52

    Article  Google Scholar 

  57. Wu G, Lı Y, Lıu G (1991) The immunoregulative effect of royal jelly acid. Zhongguo Yaoke Daxue Xuebao 22:117–118

    Google Scholar 

  58. Sediva M, Laho M, Koh L, Mojžišov A, Majt J, Klaudiny J (2018) 10-HDA, a major fatty acid of royal jelly, exhibits PH dependent growth-inhibitory activity against different strains of Paenibacillus larvae. Molecules 23(12):3236

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ecem Bayram N, Cebi N, Celik S, Gercek YC, Bayram S, Tanuğur Samancı AE, Sağdıç O, Özkök A (2021) Turkish royal jelly: amino acid, physicochemical, antioxidant, multi-elemental, antibacterial and fingerprint profiles by analytical techniques combined with chemometrics. J Apic Res 60(5):751–764

    Article  Google Scholar 

  60. Wei WT, Hu YQ, Zheng HQ, Cao LF, Hu FL, Hepburn HR (2013) Geographical influences on content of 10-hydroxy-trans-2-decenoic acid in royal jelly in China. J Econ Entomol 106(5):1958–1963

    Article  CAS  PubMed  Google Scholar 

  61. Garcia MC, Finola MS, Marioli JM (2013) Bioassay directed identification of royal jelly’s active compounds against the growth of bacteria capable of infecting cutaneous wounds. Adv Appl Microbiol 3:138–144

    Article  Google Scholar 

  62. Kim BY, Lee KS, Jung B, Choi YS, Kim HK, Yoon HJ, Gui ZZ, Lee J, Jin BR (2019) Honeybee (Apis cerana) major royal jelly protein 4 exhibits antimicrobial activity. J Asia-Pac Entomol 22(1):175–182

    Article  Google Scholar 

  63. Yang YC, Chou WM, Widowati DA, Lin IP, Peng CC (2018) 10-hydroxy-2-decenoic acid of royal jelly exhibits bactericide and anti-inflammatory activity in human colon cancer cells. BMC Complement Altern Med 18(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou J, Xue X, Li Y, Zhang J, Zhao J (2007) Optimized determination method for trans-10-hydroxy-2-decenoic acid content in royal jelly by high-performance liquid chromatography with an internal standard. J AOAC Int 90(1):244–249

    Article  CAS  PubMed  Google Scholar 

  65. Collazo N, Carpena M, Nuñez-estevez B, Otero P, Simal-gandara J, Prieto MA (2021) Health promoting properties of bee royal jelly: food of the queens. Nutrients 13(2):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khazaei M, Ansarian A, Ghanbari E, Khazaei M, Ansarian A, Ghanbari E (2017) New findings on biological actions and clinical applications of royal jelly: a review. J Diet Suppl 15(5):757–775

    Article  PubMed  Google Scholar 

  67. Alreshoodi MF, Sultanbawa Y (2015) Antimicrobial activity of royal jelly. Anti-Infect Agents 13(1):50–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ES: experimental study, methodology, writing-reviewing and editing, visualization. MK: providing material, editing. HS: experimental study. AB: experimental study. SAK: experimental study, providing material.

Corresponding author

Correspondence to Emine Sonmez.

Ethics declarations

Conflict of interest

The author declares no known individual or financial conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonmez, E., Kekecoglu, M., Sahin, H. et al. An evaluation of the chemical composition and biological properties of Anatolian Royal Jelly, drone brood and queen bee larvae. Eur Food Res Technol 249, 1391–1401 (2023). https://doi.org/10.1007/s00217-023-04221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04221-0

Keywords

Navigation