Skip to main content
Log in

The content and profile of biologically active compounds present in individual parts of nasturtium (Tropaeolum majus L.): comprehensive study

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The nasturtium (Tropaeolum majus L.) contains many biologically active compounds with very promising effects on human health. Our attention was paid to glucotropaeolin and phenolic compounds that were simultaneously determined in different parts of nasturtium using rapid reversed-phase high performance liquid chromatography coupled to tandem mass spectrometry. Mainly isomers of hydroxycinnamic acid and derivatives of quinic acid, kaempferol, and quercetin were present. Moreover, many of them were identified for the first time. Their representation varied significantly depending on the part of nasturtium (flower, stem, seed, and leaf). Although the highest total concentration of the target compounds was found in leaves, all monitored compounds were present in flowers at concentrations higher than their limit of quantification. Furthermore, the effect of sample pre-treatment (drying and freezing) on their content was investigated. Surprisingly, frozen samples showed a considerable reduction in glucotropaeolin content. Finally, antioxidant capacity, total phenolic content, and total anthocyanin content were determined using spectrophotometric techniques and the results were compared to chromatographic data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2 ‘-Azinobis(3-ethyl-2, 3-dihydrobenzothiazol-6-sulfonát)

DPPH:

1,1 ‘-Difenyl–2-pikrylhydrazyl

FW:

Fresh weight

GAE:

Gallic acid equivalent

GTL:

Glucotropaeolin

PPs:

Phenolic compounds

TAC:

Total anthocyanin content

TEAC:

Trolox equivalent antioxidant capacity

TPC:

Total phenolic content

References

  1. Bazylko A, Granica S, Filipek A, Piwowarski J, Stefańska J, Osińska E, Kiss AK (2013) Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind Crops Prod 50:88–94. https://doi.org/10.1016/j.indcrop.2013.07.003

    Article  CAS  Google Scholar 

  2. Brondani J, Cuelho C, Marangoni L, Lima R, Guex C, Bonilha I, Manfron M (2016) Traditional usages, botany, phytochemistry, biological activity and toxicology of Tropaeolum majus L. - A review. Bol Latinoam Caribe Plant Med Aromat 15(4):264–273

    CAS  Google Scholar 

  3. Garzón GA, Wrolstad RE (2009) Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chem 114(1):44–49. https://doi.org/10.1016/j.foodchem.2008.09.013

    Article  CAS  Google Scholar 

  4. Jakubczyk K, Janda K, Watychowicz K, Łukasiak J, Wolska J (2018) Garden nasturtium (Tropaeolum majus L.) - a source of mineral elements and bioactive compounds. Rocz Panstw Zakl Hig 69(2):119–126

    CAS  PubMed  Google Scholar 

  5. Gasparotto Junior A, Boffo MA, Lourenço EL, Stefanello ME, Kassuya CA, Marques MC (2009) Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. J Ethnopharmacol 122(3):517–522. https://doi.org/10.1016/j.jep.2009.01.021

    Article  Google Scholar 

  6. Garzón GA, Manns DC, Riedl K, Schwartz SJ, Padilla-Zakour O (2015) Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). J Agric Food Chem 63(6):1803–1811. https://doi.org/10.1021/jf503366c

    Article  CAS  PubMed  Google Scholar 

  7. Koike A, Barreira JCM, Barros L, Santos-Buelga C, Villavicencio ALCH, Ferreira ICFR (2015) Irradiation as a novel approach to improve quality of Tropaeolum majus L. flowers: Benefits in phenolic profiles and antioxidant activity. Innov Food Sci Emerg Technol 30:138–144. https://doi.org/10.1016/j.ifset.2015.04.009

    Article  CAS  Google Scholar 

  8. Navarro-González I, González-Barrio R, García-Valverde V, Bautista-Ortín AB, Periago MJ (2015) Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. Int J Mol Sci 16(1):805–822. https://doi.org/10.3390/ijms16010805

    Article  CAS  Google Scholar 

  9. Gasparotto Junior A, Gasparotto FM, Lourenço EL, Crestani S, Stefanello ME, Salvador MJ, da Silva-Santos JE, Marques MC, Kassuya CA (2011) Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 134(2):363–372. https://doi.org/10.1016/j.jep.2010.12.026

    Article  CAS  PubMed  Google Scholar 

  10. Bazylko A, Parzonko A, Jeż W, Osińska E, Kiss AK (2014) Inhibition of ROS production, photoprotection, and total phenolic, flavonoids and ascorbic acid content of fresh herb juice and extracts from the leaves and flowers of Tropaeolum majus. Ind Crops Prod 55:19–24. https://doi.org/10.1016/j.indcrop.2014.01.056

    Article  CAS  Google Scholar 

  11. Barros RGC, Andrade JKS, Pereira UC, de Oliveira CS, Rezende YRRS, Oliveira Matos Silva T, Nogueira JP, Gualberto NC, Caroline Santos Araujo H, Narain N (2020) Phytochemicals screening, antioxidant capacity and chemometric characterization of four edible flowers from Brazil. Food Res Int 130:108899. https://doi.org/10.1016/j.foodres.2019.108899

    Article  CAS  PubMed  Google Scholar 

  12. Kandil MAM, Sabry RM, Ahmed SS (2016) Influence of drying methods on the quality of sage (Salvia officinalis), parsley (Petroselinum crispum) and nasturtium (Tropaeolum majus). Res J Pharm, Biol Chem Sci 7(4):1112–1123

    CAS  Google Scholar 

  13. Ares AM, Nozal MJ, Bernal JL, Bernal J (2014) Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem 152:66–74. https://doi.org/10.1016/j.foodchem.2013.11.125

    Article  CAS  PubMed  Google Scholar 

  14. Kleinwächter M, Schnug E, Selmar D (2008) The glucosinolate – myrosinase system in nasturtium (Tropaeolum majus L.): Variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. J Agric Food Chem 56(23):11165–11170. https://doi.org/10.1021/jf802053n

    Article  CAS  PubMed  Google Scholar 

  15. Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P (2018) Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem 245:1204–1211. https://doi.org/10.1016/j.foodchem.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  16. Jo JS, Bhandari SR, Kang GH, Lee JG (2016) Comparative analysis of individual glucosinolates, phytochemicals, and antioxidant activities in broccoli breeding lines. Hortic Environ Biotechnol 57(4):392–403. https://doi.org/10.1007/s13580-016-0088-7

    Article  CAS  Google Scholar 

  17. Radošević K, Srček VG, Bubalo MC, Brnčić SR, Takács K, Redovniković IR (2017) Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts. J Food Compos Anal 61:59–66. https://doi.org/10.1016/j.jfca.2017.02.001

    Article  CAS  Google Scholar 

  18. Rutnakornpituk B, Boonthip C, Sanguankul W, Sawangsup P, Rutnakornpituk M (2018) Study in total phenolic contents, antioxidant activity and analysis of glucosinolate compounds in cruciferous vegetables. Naresuan Univ J: Sci Technol 26(2):27–37

    Google Scholar 

  19. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory, II: analytical method validation and quality assurance. TrAC-Trends Anal Chem 23(8):535–552. https://doi.org/10.1016/j.trac.2004.04.001

    Article  CAS  Google Scholar 

  20. Thompson M, Ellison S, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74(5):835–855. https://doi.org/10.1351/pac200274050835

    Article  CAS  Google Scholar 

  21. AOAC International (2016). Guidelines for Standard Method Performance Requirements. In G.W. Latimer, Jr. (Ed.), Official Methods of Analysis of AOAC International (20th ed., Appendix F). AOAC International. http://www.eoma.aoac.org/app_f.pdf. Accessed 1 June 2022

  22. Šilarová P, Česlová L, Meloun M (2017) Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chem 237:471–480. https://doi.org/10.1016/j.foodchem.2017.05.133

    Article  CAS  PubMed  Google Scholar 

  23. Rivero-Pérez MD, Muňiz P, González-Sanjose ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55:5476–5483. https://doi.org/10.1021/jf070306q

    Article  CAS  PubMed  Google Scholar 

  24. Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Analytical Chem. https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  25. Clifford MN, Kirkpatrick J, Kuhnert N, Roozendaal H, Salgado PR (2008) LC–MSn analysis of the cis isomers of chlorogenic acids. Food Chem 106:379–385. https://doi.org/10.1016/j.foodchem.2007.05.081

    Article  CAS  Google Scholar 

  26. Ncube EN, Mhlongo MI, Piater LA, Steenkamp PA, Dubery IA, Madala NE (2014) Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Central J. https://doi.org/10.1186/s13065-014-0066-z

    Article  Google Scholar 

  27. Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Miesbauer O, Eisner P (2021) Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 26(5):1244. https://doi.org/10.3390/molecules26051244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukalova Fukalova T, García Martínez MD, Raigón MD (2021) Five undervalued edible species inherent to autumn-winter season: nutritional composition, bioactive constituents and volatiles profile. PeerJ 9:e12488. https://doi.org/10.7717/peerj.12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rop O, Mlcek J, Jurikova T, Neugebauerova J, Vabkova J (2012) Edible flowers—a new promising source of mineral elements in human nutrition. Molecules 17(6):6672–6683. https://doi.org/10.3390/molecules17066672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project SGS_2021_001 of University of Pardubice is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

LČ: conceptualization, methodology, formal analysis, writing–review and editing, supervision. JK: data curation, writing–original draft. TŠ: investigation, data curation.

Corresponding author

Correspondence to Lenka Česlová.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Compliance with ethics requirement

This study does not involve any human or animal testing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 693 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Česlová, L., Klikarová, J. & Šalomounová, T. The content and profile of biologically active compounds present in individual parts of nasturtium (Tropaeolum majus L.): comprehensive study. Eur Food Res Technol 249, 413–428 (2023). https://doi.org/10.1007/s00217-022-04126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04126-4

Keywords

Navigation