Skip to main content

Advertisement

Log in

The application of solar drying process for the valorisation of papaya fruit

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Food loss and malnutrition are critical aspects of modern society and a source of concern especially in developing countries, such as East Africa. The aim of the work was to provide an eco-sustainable solution to both problems, using an economical and green technology, such as solar drying. In the present work two cheap and efficient solar dryers, based on an innovative mild technology, were used for the valorisation of papaya fruit. A total of seven drying experiments on papaya and papaya seeds were performed to produce fruit-based ingredients with an improved shelf life. The obtained produces showed microbiological safety, with aw values lower than 0.55, stability over time (at least 2 months) and appreciable colorimetric characteristics. The dried products were used for the production of a functional food intended to improve the nutritional and health status of school-age children. The fruit meals have been used for their fiber and important phytochemicals contents, while papaya seeds have been included for their anthelmintic activity. The appreciation rate of the proposed food by the students (95%) suggested the possibility of its easy inclusion in the school menu. The proposed approach could be a promising tool of managing food loss and malnutrition in Developing Countries such as Tanzania, by increasing the shelf life of perishable products providing nutritious foods. This perspective meets the goals «Zero Hunger» and «Responsible Consumption and Production» included in the Sustainable Development Goals drawn up by the United Nations Member States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. The 17 Goals (2015) United Nations. https://sdgs.un.org/goals. Accessed 6 July 2021

  2. The Sustainable Development Goals Report 2020 (2020) United Nations. https://sdgs.un.org/sites/default/files/2020-09/The-Sustainable-Development-Goals-Report-2020.pdf. Accessed 6 July 2021

  3. de La O Campos AP, Villani C, Davis B, Takagi M (2018) Ending extreme poverty in rural areas—sustaining livelihoods to leave no one behind, Rome. https://www.fao.org/3/ca1908en/CA1908EN.pdf. Accessed 6 July 2021

  4. Ochieng J, Afari-Sefa V, Lukumay PJ, Dubois T (2017) Determinants of dietary diversity and the potential role of men in improving household nutrition in Tanzania. PLoS ONE 12:e0189022. https://doi.org/10.1371/journal.pone.0189022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ssemwanga M, Makule E, Kayondo S (2020) The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: a case of mangoes and pineapples. Heliyon 6:e04163. https://doi.org/10.1016/j.heliyon.2020.e04163

    Article  Google Scholar 

  6. Mongi RJ, Ndabikunze BK, Wicklund T, Chove LM, Chove BE (2015) Effect of solar drying methods on total phenolic contents and antioxidant activity of commonly consumed fruits and vegetable (mango, banana, pineapple and tomato) in Tanzania. Afr J Food Sci 9:291–300. https://doi.org/10.5897/AJFS2015.1232

    Article  Google Scholar 

  7. de Oliveira JG, Vitória AP (2011) Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Res Int 44:1306–1313. https://doi.org/10.1016/j.foodres.2010.12.035

    Article  CAS  Google Scholar 

  8. Gayosso-García Sancho LE, Yahia EM, González GA (2011) Identification and quantification of phenols. carotenoids and vitamin C from papaya (Carica papaya L. cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Res Int 44:1284–1291. https://doi.org/10.1016/j.foodres.2010.12.001

    Article  CAS  Google Scholar 

  9. Cheenkachorn K, Jintanatham P, Rattanaprapa S (2012) Drying of papaya (Carica papaya L.) using a microwave-vacuum dryer. Int J Food Sci Nutr 6:793–797. https://doi.org/10.5281/zenodo.1328428

    Article  Google Scholar 

  10. Chandra A, Kumar S, Tarafdar A, Nema PK (2021) Ultrasonic and osmotic pretreatments followed by convective and vacuum drying of papaya slices. J Sci Food Agric 101:2264–2272. https://doi.org/10.1002/jsfa.10847

    Article  CAS  PubMed  Google Scholar 

  11. Vega-Gálvez A, Uribe E, Poblete J, García V, Pastén A, Aguilera LE, Stucken K (2021) Comparative study of dehydrated papaya (Vasconcellea pubescens) by different drying methods: quality attributes and effects on cells viability. J Food Meas Charact 15:2524–2530

    Article  Google Scholar 

  12. Vega-Gálvez A, Stucken K, Cantuarias C, Lamas F, García V, Pastén A (2021) Antimicrobial properties of papaya (Vasconcellea pubescens) subjected to low-temperature vacuum dehydration. Innov Food Sci Emerg Technol 67:102563. https://doi.org/10.1016/j.ifset.2020.102563

    Article  CAS  Google Scholar 

  13. Chai HY, Yusup S, Ruslan SHM (2020) Review of bioactive compounds extracted from Carica papaya linn. Curr Nutr Food Sci 16:1287–1298

    Article  CAS  Google Scholar 

  14. Islam MdR, Haque AR, Kabir MdR, Hasan MdM, Khushe KJ, Hasan SMK (2021) Fruit by-products: the potential natural sources of antioxidants and α-glucosidase inhibitors. J Food Sci Technol 58:1715–1726. https://doi.org/10.1007/s13197-020-04681-2

    Article  CAS  PubMed  Google Scholar 

  15. Silva JS, Ortiz DW, Garcia LGC, Asquieri ER, Becker FS, Damiani C (2020) Effect of drying on nutritional composition, antioxidant capacity and bioactive compounds of fruits co-products. Food Sci Technol 40:810–816. https://doi.org/10.1590/fst.21419

    Article  Google Scholar 

  16. Kumoro AC, Alhanif M, Wardhani DH (2020) A critical review on tropical fruits seeds as prospective sources of nutritional and bioactive compounds for functional foods development: a case of indonesian exotic fruits. Int J Food Sci 2020:1–15. https://doi.org/10.1155/2020/4051475

    Article  Google Scholar 

  17. Sugiharto S (2020) Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry—a review. Vet World 13:1613–1619. https://doi.org/10.14202/vetworld.2020.1613-1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adesuyi AO, Ipinmoroti KO (2011) The nutritional and functional properties of the seed flour varieties of Carica papaya. Curr Res Chem 3:70–75. https://doi.org/10.3923/crc.2011.70.75

    Article  CAS  Google Scholar 

  19. dos Santos CM, de Abreu CMP, Freire JM, Queiroz ER, Mendonça MM (2014) Chemical characterization of the flour of peel and seed from two papaya cultivars. Food Sci Technol (Campinas) 34:353–357. https://doi.org/10.1590/fst.2014.0048

    Article  Google Scholar 

  20. El-Safy FS, Salem RH, Abd El-Ghany ME 2012 Chemical and nutritional evaluation of different seed flours as novel sources of protein. World Dairy Food Sci 7:59–65. https://www.idosi.org/wjdfs/wjdfs7(1)/7.pdf

  21. Okeniyi JAO, Ogunlesi TA, Oyelami OA, Adeyemi LA (2007) Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. J Med Food 10:194–196. https://doi.org/10.1089/jmf.2005.065

    Article  PubMed  Google Scholar 

  22. Kermanshai R, McCarry BE, Rosenfeld J, Summers PS, Weretilnyk EA, Sorger GJ (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435. https://doi.org/10.1016/S0031-9422(01)00077-2

    Article  CAS  PubMed  Google Scholar 

  23. Tona L, Kambu K, Ngimbi N, Cimanga K, Vlietinck AJ (1998) Antiamoebic and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol 61:57–65. https://doi.org/10.1016/S0378-8741(98)00015-4

    Article  CAS  PubMed  Google Scholar 

  24. Kugo M, Keter L, Maiyo A, Kinyua J, Ndemwa P, Maina G, Otieno P, Songok EM (2018) Fortification of Carica papaya fruit seeds to school meal snacks may aid Africa mass deworming programs: a preliminary survey. BMC Complement Altern Med 18:327. https://doi.org/10.1186/s12906-018-2379-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galanakis CM, Aldawoud TMS, Rizou M, Rowan NJ, Ibrahim SA (2020) Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: a comprehensive review. Foods 9:1701. https://doi.org/10.3390/foods9111701

    Article  CAS  PubMed Central  Google Scholar 

  26. Galanakis CM, Rizou M, Aldawoud TMS, Ucak I, Rowan NJ (2021) Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci Technol 110:193–200

    Article  CAS  Google Scholar 

  27. Galanakis CM (2020) The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 9:523. https://doi.org/10.3390/foods9040523

    Article  CAS  PubMed Central  Google Scholar 

  28. Mathlouthi M (2003) In: Caballero B, Finglas P, Toldrá F (ed) Encyclopedia of Food Sciences and Nutrition, 2nd edn. Academic Press, New York. https://doi.org/10.1016/B0-12-227055-X/00369-2

  29. Marinoni L, Stellari A, Cattaneo TMP (2021) A mild and innovative solar drying process to provide high quality products. J Food Meas Charact. https://doi.org/10.1007/s11694-021-01191-3

    Article  Google Scholar 

  30. G-teK (2016) Italo base+© User Manual. G-teK srl, Modena

  31. G-teK (2018) ZefiroMAX+©. G-teK srl, Modena

  32. Bennamoun L (2013) Integration of photovoltaic cells in solar drying systems. Dry Technol 31:1284–1296. https://doi.org/10.1080/07373937.2013.788510

    Article  CAS  Google Scholar 

  33. AOAC (1995) Official Methods of Analysis of the Association of Official Analytical Chemists, Vol II, 16th edn. AOAC, Arlington

  34. Wrolstad RE, Smith DE (2010). In: Nielsen S (ed) Food analysis, 4th edn. Springer, New York

    Google Scholar 

  35. Gurtler JB, Doyle MP, Kornacki JL (2014) The microbiological safety of low water activity foods and spices. Springer, New York. https://doi.org/10.1007/978-1-4939-2062-4

    Book  Google Scholar 

  36. Abano EE, Sam-Amoah LK, Owusu J, Engmann FN (2013) Effects of ascorbic acid, salt, lemon juice, and honey on drying kinetics and sensory characteristic of dried mango. Croat J Food Sci Technol 5:1–10

    Google Scholar 

  37. Janjai S, Lamlert N, Intawee P, Mahayothee B, Boonrod Y, Haewsungcharern M, Bala BK, Nagle M, Müller J (2009) Solar drying of peeled longan using a side loading type solar tunnel dryer: experimental and simulated performance. Dry Technol 27:595–605. https://doi.org/10.1080/07373930802716383

    Article  Google Scholar 

  38. Vega-Gálvez A, Poblete J, Quispe-Fuentes I, Uribe E, Bilbao-Sainz C, Pastén A (2019) Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: Evaluation of antioxidant and antidiabetic potential. J Food Meas Charact 13:1980–1990. https://doi.org/10.1007/s11694-019-00117-4

    Article  Google Scholar 

  39. Garcia CC, Caetano LC, de Souza SK, Mauro MA (2014) Influence of edible coating on the drying and quality of papaya (Carica papaya). Food Bioproc Tech 7:2828–2839. https://doi.org/10.1007/s11947-014-1350-6

    Article  Google Scholar 

  40. Puangsri T, Abdulkarim SM, Ghazali HM (2005) Properties of Carica papaya L. (papaya) seed oil following extractions using solvent and aqueous enzymatic methods. J Food Lipids 12:62–76. https://doi.org/10.1111/j.1745-4522.2005.00006.x

    Article  CAS  Google Scholar 

  41. Sablani SS (2006) Food quality attributes in drying. Stewart Postharvest Rev 2:1–6. https://doi.org/10.2212/spr.2006.2.8

    Article  Google Scholar 

  42. Barbosa-Canovas VG, Fontana JA Jr, Schmidt JS, Labuza PT (2007) Water activity in foods—fundamentals and applications. Blackwell, London

    Book  Google Scholar 

  43. Samoticha J, Wojdyło A, Lech K (2016) The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Sci Technol 6:484–489. https://doi.org/10.1016/j.lwt.2015.10.073

    Article  CAS  Google Scholar 

  44. Ocoró-Zamora MU, Ayala-Aponte AA (2013) Influence of thickness on the drying of papaya puree (Carica papaya L.) Through refractance windowTM technology. Dyna 80:147–154

    Google Scholar 

  45. Reis RC, de Souza VE, da Silva SCS, de Oliveira Mamede ME, da Silva Araújo ÍM (2018) Stability and sensory quality of dried papaya. Food Nutr Sci 9:489–501. https://doi.org/10.4236/fns.2018.95038

    Article  CAS  Google Scholar 

  46. Udomkun P, Nagle M, Argyropoulos D, Mahayothee B, Latif S, Müller J (2016) Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chem 196:712–719. https://doi.org/10.1016/j.foodchem.2015.09.103

    Article  CAS  PubMed  Google Scholar 

  47. Walsh KB, Blasco J, Zuze-Sasse M, Sun X (2020) Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: the science behind three decades of commercial use. Postharvest Biol Tech 168:111246. https://doi.org/10.1016/j.postharvbio.2020.111246

    Article  CAS  Google Scholar 

  48. Toledo-Martín EM, García-García MC, Font R, Moreno-Rojas JM, Gómez P, Salinas-Navarro M, Del Río-Celestino M (2016) Application of visible/near-infrared reflectance spectroscopy for predicting internal and external quality in pepper: Estimation of quality in pepper by NIR spectroscopy. J Sci Food Agric 96:3114–3125. https://doi.org/10.1002/jsfa.7488

    Article  CAS  PubMed  Google Scholar 

  49. Nwofia GE, Ojimelukwe P, Eji C (2012) Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L.) morphotypes. J Medicinal Aromat Plants 2:200–206

    Google Scholar 

  50. Ordoñez-Santos LE, Ledezma-Realpe DP (2013) Lycopene concentration and physico-chemical properties of tropical fruits. Food Nutr Sci 4:758–762. https://doi.org/10.4236/fns.2013.47097

    Article  CAS  Google Scholar 

  51. Acharya UK, Subedi PP, Walsh KB (2017) Robustness of tomato quality evaluation using a portable Vis-SWNIRS for dry matter and colour. Int J Anal Chem 2017:1–8. https://doi.org/10.1155/2017/2863454

    Article  CAS  Google Scholar 

  52. Ishigaki M, Meksiarun P, Kitahama Y, Zhang L, Hashimoto H, Genkawa T, Ozaki Y (2017) Unveiling the aggregation of lycopene in vitro and in vivo: UV–Vis, resonance raman, and raman imaging studies. J Phys Chem 121:8046–8057. https://doi.org/10.1021/acs.jpcb.7b04814

    Article  CAS  Google Scholar 

  53. Vega-Gálvez A, Poblete J, Rojas-Carmona R, Uribe E, Pastén A, Goñi MG (2021) Vacuum drying of Chilean papaya (Vasconcellea pubescens) fruit pulp: effect of drying temperature on kinetics and quality parameters. J Food Sci Technol 58:3482–3492. https://doi.org/10.1007/s13197-021-05005-8

    Article  CAS  PubMed  Google Scholar 

  54. Minuye M, Getachew P, Laillou A, Chitekwe S, Baye K (2021) Effects of different drying methods and ascorbic acid pretreatment on carotenoids and polyphenols of papaya fruit in Ethiopia. Food Sci Nutr 9:3346–3353. https://doi.org/10.1002/fsn3.2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. da Silva Júnior EV, Melo LL, Medeiros RAB, Barros ZMP, Azoubel PM (2018) Influence of ultrasound and vacuum assisted drying on papaya quality parameters. LWT Food Sci Technol 97:317–322. https://doi.org/10.1016/j.lwt.2018.07.017

    Article  CAS  Google Scholar 

  56. Nimmanpipug N, Therdthai N (2013) Effect of osmotic dehydration time on hot air drying and microwave vacuum drying of papaya. Food Appl Biosci J 1:1–10. https://doi.org/10.14456/fabj.2013.1

    Article  Google Scholar 

  57. Chong CH, Law CL, Figiel A, Wojdyło A, Oziembłowski M (2013) Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem 141:3889–3896. https://doi.org/10.1016/j.foodchem.2013.06.042

    Article  CAS  PubMed  Google Scholar 

  58. Udomkun P, Argyropoulos D, Nagle M, Mahayothee B, Müller J (2015) Sorption behaviour of papayas as affected by compositional and structural alterations from osmotic pretreatment and drying. J Food Eng 157:14–23. https://doi.org/10.1016/j.jfoodeng.2015.01.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the community of monks of the Mvinwa Abbey and in particular Abbot Pambo and Father Lawrence for their support and collaboration.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Marinoni.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacifico, I., De Gara, L., Stellari, A. et al. The application of solar drying process for the valorisation of papaya fruit. Eur Food Res Technol 248, 857–867 (2022). https://doi.org/10.1007/s00217-021-03932-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03932-6

Keywords

Navigation