Skip to main content
Log in

Quantitative proteome analysis revealed metabolic changes in Arthrospira platensis in response to selenium stress

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Due to its high nutritional value and selenium tolerance, selenium-enriched Arthrospira platensis was a promising source for dietary Se supplementation. However, the regulatory mechanism involved in selenium enrichment in A. platensis has not been completely elucidated. In this study, we investigated the changes in physiological and proteome profiles of selenium-enriched A. platensis (Se-AP). At 30 mg/mL Na2SeO3, organic selenium concentration of A. platensis was 52.94 mg/kg. Se-AP proteins exhibited stronger antioxidant activity than the native selenium-free A. platensis (AP) proteins according to total reducing power, 2,2ʹ-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging activity. Using a tandem mass tag-based (TMT) quantitative proteomics method, 948 differentially expressed proteins were identified when A. platensis was cultured with 30 mg/L Na2SeO3. Following GO functional annotation and KEGG enrichment analysis, we found that the photosynthetic and ribosome pathways were significantly inhibited, while oxidative phosphorylation, the tricarboxylic acid cycle, prokaryote carbon fixation, amino acid synthesis, ATP-binding cassette (ABC) transporters, and antioxidant activity were markedly enhanced, improving the adaptation of A. platensis under selenium stress. Our findings will contribute to further understanding the physiological response of A. platensis against selenium stress, providing a potential strategy for developing selenium-enriched A. platensis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinbrenner H, Speckmann B, Klotz L-O (2016) Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys 595:113–119

    CAS  PubMed  Google Scholar 

  2. Liu Z, Yao X, Du J, Song B, Zhang F (2018) Selenium deficiency augments the levels of inflammatory factors and heat shock proteins via the redox regulatory pathway in the skeletal muscles of mice. Biol Trace Elem Res 182(2):309–316

    CAS  PubMed  Google Scholar 

  3. Huawei Z (2008) F CG: Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19(1):1–7

    Google Scholar 

  4. Newman R, Waterland N, Moon Y, Tou JC (2019) Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—a review. Plant Foods Hum Nutr 74(4):449–460

    CAS  PubMed  Google Scholar 

  5. Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Re 193(1):44–63

    CAS  Google Scholar 

  6. Thiry C, Ruttens A, De Temmerman L, Schneider Y-J, Pussemier L (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130(4):767–784

    CAS  Google Scholar 

  7. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  9. MacFarquhar JK (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256

    PubMed  PubMed Central  Google Scholar 

  10. Chen YC, Prabhu KS, Das A, Mastro AM (2013) Dietary selenium supplementation modifies breast tumor growth and metastasis. Int J Cancer 133(9):2054–2064

    CAS  PubMed  Google Scholar 

  11. Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radical Biol Med 127:80–97

    CAS  Google Scholar 

  12. Adadi P, Barakova NV, Muravyov KY, Krivoshapkina EF (2019) Designing selenium functional foods and beverages: a review. Food Res Int 120:708–725

    CAS  PubMed  Google Scholar 

  13. Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2016.02074

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu C, Ling Q, Cai Z, Wang Y, Zhang Y (2016) Selenium-containing phycocyanin from Se-enriched spirulina platensis reduces inflammation in dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. J Agric Food Chem 64(24):5060–5070

    CAS  PubMed  Google Scholar 

  15. Gong R, Ai C, Zhang B, Cheng X (2018) Effect of selenite on organic selenium speciation and selenium bioaccessibility in rice grains of two Se-enriched rice cultivars. Food Chem 264:443–448

    CAS  PubMed  Google Scholar 

  16. Wang Q, Zuo Y, Chen T, Zheng W, Yang Y (2019) Effects of selenium on antioxidant enzymes and photosynthesis in the edible seaweed Gracilaria lemaneiformis. J Appl Phycol 31(2):1303–1310

    CAS  Google Scholar 

  17. Kieliszek M, Blazejak S, Bzducha-Wrobel A, Kot AM (2019) Effect of selenium on growth and antioxidative system of yeast cells. Mol Biol Rep 46(2):1797–1808

    CAS  PubMed  Google Scholar 

  18. Martina P, Fernando M, Beatrice P (2017) Selenium enrichment of horticultural crops. Molecules (Basel, Switzerland) 22(6):933

    Google Scholar 

  19. Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ (2017) Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci 8:1365

    PubMed  PubMed Central  Google Scholar 

  20. Niedzielski P, Mleczek M, Siwulski M, Rzymski P, Gąsecka M, Kozak L (2015) Supplementation of cultivated mushroom species with selenium: bioaccumulation and speciation study. Eur Food Res Technol 241(3):419–426

    CAS  Google Scholar 

  21. Rzymski P, Mleczek M, Niedzielski P, Siwulski M, Gąsecka M (2017) Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. J Sci Food Agric 97(3):923–928

    CAS  PubMed  Google Scholar 

  22. Sun J-y, Hou Y-j, Fu X-y, Fu X-t, Ma J-k, Yang M-f, Sun B-l, Fan C-d, Oh J (2019) Selenium-containing protein from selenium-enriched Spirulina platensis Attenuates Cisplatin-induced apoptosis in MC3T3-E1 mouse preosteoblast by inhibiting mitochondrial dysfunction and ROS-mediated oxidative damage. Front Physiol. https://doi.org/10.3389/fphys.2018.01907

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou N, Long H, Wang C, Yu L, Liu X (2020) Research progress on the biological activities of selenium polysaccharides. Food Funct 11(6):4834–4852

    CAS  PubMed  Google Scholar 

  24. Li ZY, Guo SY, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Biores Technol 89(2):171–176

    CAS  Google Scholar 

  25. Schiavon M, Ertani A, Parrasia S, Vecchia FD (2017) Selenium accumulation and metabolism in algae. Aquat Toxicol 189:1–8

    CAS  PubMed  Google Scholar 

  26. Zeng R, Farooq MU, Wang L, Su Y, Zheng T, Ye X, Jia X, Zhu J (2019) Study on differential protein expression in natural selenium-enriched and non-selenium-enriched rice based on iTRAQ quantitative proteomics. Biomolecules 9(4):130

    PubMed Central  Google Scholar 

  27. Xu L, Wang Y, Zhang F, Tang M, Chen Y, Wang J, Karanja BK, Luo X, Zhang W, Liu L (2017) Dissecting root proteome changes reveals new insight into cadmium stress response in radish (Raphanus sativus L.). Plant Cell Physiol 58(11):1901–1913

    CAS  PubMed  Google Scholar 

  28. Fu H-l, Wang X-s, Huang Y-y, Gong F-y, Guo J-j, He C-t, Yang Z-y (2020) Screening of the proteins related to the cultivar-dependent cadmium accumulation of Brassica parachinensis L. Ecotoxicol Environ Saf 188:109–858

    Google Scholar 

  29. Wong Y-S (2008) Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. J Integr Plant Biol 50(1):40–48

    PubMed  Google Scholar 

  30. Huang Z, Guo BJ, Wong RNS, Jiang Y (2007) Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis. Food Chem 100(3):1137–1143

    CAS  Google Scholar 

  31. Liu M, Min L, Zhu C, Rao Z, Wenyan L (2017) Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int J Biol Macromol 104(Part A):732–738

    CAS  PubMed  Google Scholar 

  32. Zhang H, Chen T, Jiang J, Wong Y-S, Yang F, Zheng W (2011) Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J Agric Food Chem 59(16):8683–8690

    CAS  PubMed  Google Scholar 

  33. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359-U360

    CAS  PubMed  Google Scholar 

  34. Huang Z, Zheng WJ, Yang F, Guo BJ (2006) Chemical composition and selenium distribution in selenium enriched Spirulina platensis biomass. Chem Nat Compd 42(6):636–640

    CAS  Google Scholar 

  35. Chen T, Wong Y-S (2008) In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J Agric Food Chem 56(12):4352–4358

    CAS  PubMed  Google Scholar 

  36. Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G (2014) A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 41(6):3897–3905

    CAS  PubMed  Google Scholar 

  37. Chang R, Lv B, Li B (2017) Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis. J Proteomics 165:119–131

    CAS  PubMed  Google Scholar 

  38. Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q (2019) Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. Plant Physiol Biochem 143:142–153

    CAS  PubMed  Google Scholar 

  39. Ismaiel MMS, Piercey-Normore MD, Rampitsch C (2017) Proteomic analyses of the cyanobacterium Arthrospira (Spirulina) platensis under iron and salinity stress. Environ Exp Bot 147:63–74

    Google Scholar 

  40. Li Q, Chang R, Sun Y, Li B (2016) iTRAQ-based quantitative proteomic analysis of Spirulina platensis in response to low temperature stress. PLoS ONE 11:e0166876

    PubMed  PubMed Central  Google Scholar 

  41. Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q (2019) Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO 2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. Plant Physiol Biochem 143:142–153

    CAS  PubMed  Google Scholar 

  42. Qingye L, Rong C, Yijun S, Bosheng L (2018) Correction: iTRAQ-based quantitative proteomic analysis of spirulina platensis in response to low temperature stress. PLoS ONE 13(4):e0196442

    Google Scholar 

  43. Kargul J, Olmos JDJ, Krupnik T (2012) Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J Plant Physiol 169(16):1639–1653

    CAS  PubMed  Google Scholar 

  44. Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LHE (2016) Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ Sci Technol 50(2):711–720

    CAS  PubMed  Google Scholar 

  45. Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32(14):1807–1818

    CAS  PubMed  Google Scholar 

  46. Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) Involving the NADPH dehydrogenase complex. Plant Cell 22(1):221–233

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu Y, Jia X, Wu Y, Hu Y, Cheng L, Zhao T, Huang Z, Wang Y (2020) Quantitative proteomic analysis of Malus halliana exposed to salt-alkali mixed stress reveals alterations in energy metabolism and stress regulation. Plant Growth Regul 90(2):205–222

    CAS  Google Scholar 

  48. Wang F-S, Dong S-R, Zhang H-Y, Wang S-Y (2018) Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms. J Proteomics 171:73–80

    CAS  PubMed  Google Scholar 

  49. Araujo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T et al (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. Plant Cell 23(2):600–627

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakayama T, Yonekura S-I, Yonei S, Zhang-Akiyama Q-M (2013) Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK—regulation of expression and biological roles in protection against oxidative stress. Genes Genet Syst 88(3):175–188

    CAS  PubMed  Google Scholar 

  51. Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS (2014) Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol Toxicol Pharmacol Cbp 166:65–74

    CAS  Google Scholar 

  52. Pécsváradi A, Nagy Z, Varga A, Vashegyi A, Zsoldos F (2010) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plant 135(1):43–50

    Google Scholar 

  53. Gojkovic Z, Garbayo I, Gomez Ariza JL, Marova I, Vilchez C (2015) Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res Biomass Biofuels Bioprod 7:106–116

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Projects in Guangxi (2019GXNSFDA245008), Guangxi Natural Science Foundation (2017GXNSFAA198297), Guangxi Science and Technology Major Special Project (AA17204075;AA17202010-3), and Guangxi Natural Science Foundation (2020GXNSFAA297038)

Author information

Authors and Affiliations

Authors

Contributions

MW: experiments, data curation, and writing; JM: validation and investigation; LH: experiment assistant; YB: methodology; XL: resources and funding acquisition; SL: supervision, conceptualization, and funding acquisition.

Corresponding author

Correspondence to Shubo Li.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with this manuscript. We have no financial or personal relationships with other individuals or organizations that can inappropriately influence our work.

Compliance with ethics requirements

The authors Miao Wang, Jinhao Meng, Li Huang, Yunxia Bai, Xiaoling Liu and Shubo Li hereby confirm that this manuscript is performed according to and follows the COPE guidelines and has not already been published nor is it under consideration for publication elsewhere. This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Supplementary data

Appendix A. Supplementary data

See Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Meng, J., Huang, L. et al. Quantitative proteome analysis revealed metabolic changes in Arthrospira platensis in response to selenium stress. Eur Food Res Technol 248, 839–856 (2022). https://doi.org/10.1007/s00217-021-03917-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03917-5

Keywords