Skip to main content
Log in

Evaluation of the effect of geographical origin and extraction solvents on bioactive and antioxidative properties of Inula viscosa L. grown in Turkey by chemometric approach

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the phenolic composition and antioxidant capacity of Inula viscosa L. aerial parts as influenced by their geographic origin and the type of extractant used. We established the extraction yield and phenolic composition of I. viscosa plants supplied from Mediterranean, Aegean, and Black Sea regions and evaluated their antioxidant capacity. Hierarchical clustering agglomerative (CA) and principal components analysis (PCA) was performed for further evaluation of similarities and differences among the I. viscosa extracts. Based on PCA and CA, the plants were specified in three distinct groups; one group presented higher bioactive composition and more potent antioxidative properties. The extractant type was one of the parameters affecting the clustering of the plants on the PCA biplot and CA dendrogram. Amongst the screened plants, Plant 1 was discriminated by its higher extraction efficiency, bioactive compounds, and antioxidant capacity compared to other plants. Ethanol was the most effective extractant studied when compared with ethyl acetate and hexane in terms of extraction yield, phenolic composition, and antioxidant capacity. Due to our findings, the phenolic composition was successfully used as a biochemical indicator to specify natural I. viscosa plants. The results highlighted that I. viscosa plant could be an excellent natural source of antioxidants to be evaluated in food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anokwuru C, Sigidi M, Boukandou M, Tshisikhawe P, Traore A, Potgieter N (2018) Molecules 23:1303

    Article  CAS  Google Scholar 

  2. Yang R, Guan Y, Wang WX, Chen HJ, He ZC, Jia AQ (2018) PLoS ONE 13:e0195508

    Article  CAS  Google Scholar 

  3. Ulewicz-Magulska B, Wesolowski M (2019) Plant Foods Hum Nut 74:61–67

    Article  CAS  Google Scholar 

  4. Kumar S, Yadav A, Yadav M, Yadav JP (2017) BMC Res Notes 10:60

    Article  CAS  Google Scholar 

  5. Rhimi W, Ben Salem I, Iatta R, Chaabane H, Saidi M, Boulila A, Cafarchia C (2018) Ind Crops Prod 113:196–201

    Article  CAS  Google Scholar 

  6. Gokbulut A, Ozhan O, Satilmis B, Batcioglu K, Gunal S, Sarer E (2013) Nat Prod Commun 8:475–478

    PubMed  CAS  Google Scholar 

  7. Brahmi-Chendouh N, Piccolella S, Crescente G, Pacifico F, Boulekbache L, Hamri-Zeghichi S, Akkal S, Madani K, Pacifico S (2019) J Food Drug Anal 27:692–702

    Article  CAS  Google Scholar 

  8. Mahmoudi H, Hosni K, Zaouali W, Amri I, Zargouni H, Ben Hamida N, Kaddour R, Hamrouni L, Ben Nasri M, Ouerghi Z (2016) J Food S 36:77–88

    Article  CAS  Google Scholar 

  9. Talib WH, Zarga MH, Mahasneh AM (2012) Molecules 17:3291–3303

    Article  CAS  Google Scholar 

  10. Seca AML, Grigore A, Pinto DCGA, Silva AMS (2014) J Ethnopharmacol 154:286–310

    Article  CAS  Google Scholar 

  11. Scribble Maps. https://www.scribblemaps.com. Accessed on 20 May 2021.

  12. Ghorbanzadeh R, Rezaei K (2017) J Am Oil Chem Soc 94:1491–1501

    Article  CAS  Google Scholar 

  13. Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Food chem 100:1409–1418

    Article  CAS  Google Scholar 

  14. Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) J Food Drug Anal 10:3

    Google Scholar 

  15. Price ML, Van Scoyoc S, Butler LG (1978) J Agric Food Chem 26:1214–1218

    Article  CAS  Google Scholar 

  16. Chan EWC, Lim YY, Ling SK, Tan SP, Lim K, Khoo MG (2009) LWT Food Sci Technol 42:1026–1030

    Article  CAS  Google Scholar 

  17. Prasad NK, Yang B, Zhao MM, Wang BS, Chen F, Jiang YM (2009) Int J Food Sci Technol 44:960–966

    Article  CAS  Google Scholar 

  18. Sultana B, Anwar F, Ashraf M (2009) Molecules 14:2167–2180

    Article  CAS  Google Scholar 

  19. Hsu B, Coupar IM, Ng K (2006) Food Chem 98:317–328

    Article  CAS  Google Scholar 

  20. Chahmi N, Anissi J, Jennan S, Farah A, Sendide K, El Hassouni M (2015) Asian Pac J Trop Biomed 5:228–233

    Article  CAS  Google Scholar 

  21. Salim H, Rimawi WH, Mjahed A (2017) J Chem and Biochem 5:12

    Google Scholar 

  22. Iloki-Assanga SB, Lewis-Luján LM, Lara-Espinoza CL, Gil-Salido AA, Fernandez-Angulo D, Rubio-Pino JL, Haines DD (2015) BMC Res Notes 8:1–14

    Article  CAS  Google Scholar 

  23. Li H, Zhang D, Tan LH, Yu B, Zhao SP, Cao WG (2017) Afr J Bot 109:1–8

    Article  CAS  Google Scholar 

  24. Sriti Eljazi J, Selmi S, Zarroug Y, Wesleti I, Aouini B, Jallouli S, Limam F (2018) Int J Food Prop 21:2309–2319

    Article  CAS  Google Scholar 

  25. Kumar S, Sandhir R, Ojha S (2014) BMC Res Notes 7:560

    Article  CAS  Google Scholar 

  26. Piluzza G, Bullitta S (2011) Pharma Biol 49:240–247

    Article  CAS  Google Scholar 

  27. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Plants (Basel) 8:96

    Article  CAS  Google Scholar 

  28. Wianowska D, Gil M (2019) Phytochem Rev 18:273–302

    Article  CAS  Google Scholar 

  29. Rotta EM, Haminiuk CWI, Maldaner L, Visentainer JV (2017) Int J Food Sci Technol 52:954–963

    Article  CAS  Google Scholar 

  30. Kainama H, Fatmawati S, Santoso M, Papilaya PM, Ersam T (2020) Pharm Chem J 53:1151–1157

    Article  CAS  Google Scholar 

  31. Koleckar V, Kubikova K, Rehakova Z, Kuca K, Jun D, Jahodar L, Opletal L (2008) Mini Rev Med Chem 8:436–447

    Article  CAS  Google Scholar 

  32. Danino O, Gottlieb HE, Grossman S, Bergman M (2009) Food Res Inter 42:1273–1280

    Article  CAS  Google Scholar 

  33. Dolkar P, Dolkar D, Angmo S, Kumar B, Stobdan T (2017) J Ber Res 7:109–116

    Article  CAS  Google Scholar 

  34. Kabtni S, Sdouga D, Bettaib Rebey I, Save M, Trifi-Farah N, Fauconnier ML, Marghali S (2020) Sci Rep 10:8293

    Article  CAS  Google Scholar 

  35. Zargoosh Z, Ghavam M, Bacchetta G, Tavili A (2019) Sci Rep 9:16021

    Article  CAS  Google Scholar 

  36. Verma N, Shukla S (2015) J App Res Med Arom Plants 2:105–113

    Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Scientific Research Projects Governing Unit of the University of Gaziantep is [Grant Number MF.YLT.20.01] gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasene Keskin Çavdar.

Ethics declarations

Conflict of interest

This study was supported financially by the Scientific Research Projects Governing Unit of the University of Gaziantep, Turkey.

Compliance with ethics requirements

The article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin Çavdar, H., Yıldırım, Z.İ. & Fadıloğlu, S. Evaluation of the effect of geographical origin and extraction solvents on bioactive and antioxidative properties of Inula viscosa L. grown in Turkey by chemometric approach. Eur Food Res Technol 248, 253–261 (2022). https://doi.org/10.1007/s00217-021-03877-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03877-w

Keywords

Navigation