Skip to main content
Log in

Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The oleaster (Elaeagnus angustifolia L.) plant grown in three different locations in Nevşehir, Turkey was analyzed to determine its phenolic component profile, total phenolic compound, total carotenoid, total flavonoid, and antioxidant capacity values. Ultrasonic extraction of the oleaster’s flour, shell, core, flower, and leaf parts was carried out under solvent and acidic hydrolysis conditions using eight different polarity solvents (water, methanol, ethanol, acetone, ethyl acetate, butanol, petroleum ether, and hexane). The phenolic component profiles were determined using high-performance liquid chromatography with diode array detector (HPLC–DAD), and the main phenolic components in the oleaster samples were gallic acid, catechin, and their derivatives. At the same time, antioxidant properties of oleaster samples were evaluated by Folin–Ciocalteu (FC), ABTS, FRAP, DPPH, and CHROMAC methods. Various parts of oleaster, whose phenolic component content was determined in this study, are thought to be a natural source that can be used against degenerative diseases in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leja M, Mareczek A, Wyzgolik G, Klepacz-Baniak J, Czekońska K (2007) Antioxidative properties of bee pollen in selected plant species. Food Chem 100:237

    Article  CAS  Google Scholar 

  2. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N, Hamidpour R (2017) Russian olive (Elaeagnus angustifolia L.): from a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J Tradit Complement Med 7:24

    Article  Google Scholar 

  3. Ishaq S, Rathore HA, Sabir SM, Maroof MS (2015) Antioxidant properties of Elaeagnus umbellata berry solvent extracts against lipid peroxidation in mice brain and liver tissues. Food Sci Biotechnol 24:673

    Article  CAS  Google Scholar 

  4. Khan SU, Khan AU, Shah AUHA, Shah SM, Hussain S, Ayaz M, Ayaz S (2016) Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia. Toxicol Ind Health 32:154

    Article  CAS  Google Scholar 

  5. Okmen G, Turkcan O (2014) A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. Afr J Tradit Complement Altern Med 11:116

    Article  CAS  Google Scholar 

  6. Sabir MS, Ahmad DS, Hussain IM, Tahir KM (2007) Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan. Saudi Med J 28:259

    PubMed  Google Scholar 

  7. Saleh AI, Mohamed I, Mohamed AA, Abdelkader M, Yalcin HC, Aboulkassim T, Batist G, Yasmeen A, Al Moustafa AE (2018) Elaeagnus angustifolia plant extract inhibits angiogenesis and downgrades cell invasion of human oral cancer cells via Erk1/Erk2 inactivation. Nutr Cancer 70:297

    Article  CAS  Google Scholar 

  8. Incilay G (2014) Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. J Essent Oil-Bearing Plants 17:1187

    Article  CAS  Google Scholar 

  9. Liao CR, Chang YS, Peng WH, Lai SC, Ho YL (2012) Analgesic and anti-inflammatory activities of the methanol extract of Elaeagnus oldhamii Maxim. in mice. Am J Chin Med 40:581

    Article  CAS  Google Scholar 

  10. Nazir N, Zahoor M, Nisar M, Khan I, Karim N, Abdel-Halim H, Ali A (2018) Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complement Altern Med 18:1

    Article  CAS  Google Scholar 

  11. Medeiros KCP, Figueiredo CAV, Figueredo TB, Freire KRL, Santos FAR, Alcantara-Neves NM, Silva TMS, Piuvezam MR (2008) Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. J Ethnopharmacol 119:41

    Article  CAS  Google Scholar 

  12. Pascoal A, Rodrigues S, Teixeira A, Feás X, Estevinho LM (2014) Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem Toxicol 63:233

    Article  CAS  Google Scholar 

  13. Pinto B, Caciagli F, Riccio E, Reali D, Sarić A, Balog T, Likić S, Scarpato R (2010) Antiestrogenic and antigenotoxic activity of bee pollen from Cystus incanus and Salix alba as evaluated by the yeast estrogen screen and the micronucleus assay in human lymphocytes. Eur J Med Chem 45:4122

    Article  CAS  Google Scholar 

  14. Mohdaly AAA, Mahmoud AA, Roby MHH, Smetanska I, Ramadan MF (2015) Phenolic extract from propolis and bee pollen: composition, antioxidant and antibacterial activities. J Food Biochem 39:538

    Article  CAS  Google Scholar 

  15. Fanali C, Dugo L, Rocco A (2013) Nano-liquid chromatography in nutraceutical analysis: determination of polyphenols in bee pollen. J Chromatogr A 1313:270

    Article  CAS  Google Scholar 

  16. Karkar B, Şahin S, Güneş ME (2021) Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. J Apic Res 60(5):765

    Article  Google Scholar 

  17. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152

    Article  CAS  Google Scholar 

  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231

    Article  CAS  Google Scholar 

  19. Şahin S, Aybastıer Ö, Dawbaa S, Karkar B, Çakmak T (2020) Study of the ability of lutein and neoxanthin as standards and in the extract of chlamydomonas reinhardtii to prevent oxidatively induced DNA base damage using ultrasensitive GC–MS/MS analysis. Chromatographia 83:919

    Article  CAS  Google Scholar 

  20. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70

    Article  CAS  Google Scholar 

  21. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50:468

    Article  CAS  Google Scholar 

  22. Şahin S, Işık E, Aybastıer Ö, Demir C (2012) Orthogonal signal correction-based prediction of total antioxidant activity using partial least squares regression from chromatograms. J Chemometrics 26:390–399

    Article  CAS  Google Scholar 

  23. Şahin S, Karkar B (2019) The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. J Food Biochem 43:1

    Google Scholar 

  24. Sarıburun E, Şahin S, Demir C, Türkben C, Uylaşer V (2010) Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75(4):328–335

    Article  CAS  Google Scholar 

  25. Biehler E, Mayer F, Hoffmann L, Krause E, Bohn T (2010) Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. J Food Sci 75:55

    Article  CAS  Google Scholar 

  26. Li N, Taylor LS, Ferruzzi MG, Mauer LJ (2013) Color and chemical stability of tea polyphenol (−)-epigallocatechin-3-gallate in solution and solid states. Food Res Int 53:909

    Article  CAS  Google Scholar 

  27. Li N, Taylor LS, Ferruzzi MG, Mauer LJ (2012) Kinetic study of catechin stability: effects of pH, concentration, and temperature. J Agric Food Chem 60:12531

    Article  CAS  Google Scholar 

  28. Roginsky V, Alegria AE (2005) Oxidation of tea extracts and tea catechins by molecular oxygen. J Agric Food Chem 53:4529

    Article  CAS  Google Scholar 

  29. Ozen T, Yenigun S, Altun M, Demirtas I (2017) Phytochemical constituents, ches and urease inhibitions, antiproliferative and antioxidant properties of Elaeagnus umbellata Thunb. Comb Chem High Throughput Screen. 20(6):559

    Article  CAS  Google Scholar 

  30. Merculieff Z, Ramnath S, Sankoli SM, Venkataramegowda S, Murthy GS, Ceballos RM (2014) Phytochemical, antioxidant and antibacterial potential of Elaeagnus Kologa (Schlecht.) Leaf. Asian Pac J Trop Med 7:S599

    Article  Google Scholar 

  31. Panja S, Chaudhuri D, Baban Ghate N, Le Minh H, Mandal N (2014) In vitro assessment of phytochemicals, antioxidant and DNA protective potential of wild edible fruit of Elaeagnus Latifolia Linn. Fruits 69:303

    Article  Google Scholar 

  32. Hassanzadeh Z, Hassanpour H (2018) Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus Angustifolia L. Sci Hortic (Amsterdam) 238:83

    Article  CAS  Google Scholar 

  33. Wang SY, Fordham IM (2007) Differences in chemical composition and antioxidant capacity among different genotypes of autumn olive (Elaeagnus Umbellate Thunb.). Food Technol Biotechnol 45:402

    CAS  Google Scholar 

  34. Saboonchian F, Jamei R, Hosseini Sarghein S (2014) Phenolic and flavonoid content of Elaeagnus Angustifolia L. (leaf and flower). Avicenna J Phytomedicine 4:231

    CAS  Google Scholar 

  35. Faramarz S, Dehghan G, Jahanban-Esfahlan A (2015) Antioxidants in different parts of oleaster as a function of genotype. BioImpacts 5:79

    Article  Google Scholar 

  36. Abizov EA, Tolkachev ON, Mal’Tsev SD, Abizova EV (2008) Composition of biologically active substances isolated from the fruits of Russian olive (Elaeagnus Angustifolia) introduced in the European part of Russia. Pharm Chem J 42:696

    Article  CAS  Google Scholar 

  37. Carradori S, Cairone F, Garzoli S, Fabrizi G, Iazzetti A, Giusti AM, Menghini L, Uysal S, Ak G, Zengin G, Cesa S (2020) Phytocomplex characterization and biological. Molecules 25:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Scientific Research Projects Foundation (BAP) of the Bursa Uludag University of Turkey [Project No. FGA-2021-416] for its support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Şahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkar, B., Şahin, S. Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. Eur Food Res Technol 248, 219–241 (2022). https://doi.org/10.1007/s00217-021-03875-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03875-y

Keywords