Skip to main content

Advertisement

Log in

Novel fructooligosaccharides of Dioscorea alata L. tuber have prebiotic potentialities

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Dioscorea alata L. (Dioscoreaceae), commonly known as water yam, is a popular tuber crop vegetable used across the globe. It is mainly composed of starch (75–84% of the dry weight) with a small amount of proteins, lipids, and vitamins and is very rich in minerals. It has nutritional superiority compared with other tropical root crops. The main aim of the study was to extract and characterize the fructooligosaccharides (FOSs) fractions from the tuber of this plant and evaluate their prebiotic properties. The soluble FOSs were fractionated by the conventional solid-phase extraction method and were characterized by FT-IR, HPTLC, and ESI–MS analyses. In addition, the beneficial health attributes of these fractions were checked for in vitro and in vivo prebiotic properties in Swiss albino mice. The FT-IR, HPTLC, and ESI–MS analyses of the FOSs from the hot water and 80% ethanol fractions showed that both are rich in inulin-like prebiotics. Furthermore, these FOSs showed an excellent prebiotic activity score and had enhanced in vitro cholesterol-binding activities in the presence of probiotic lactic acid bacteria (LAB) strains. Moreover, these had good antioxidant efficacies with IC50 values of 36.51 µg/ml and 33.12 µg/ml. In vivo treatment in Swiss albino mice, these FOSs had significantly lowered serum cholesterol (df = 6, p value < 2.2e−16), serum HDL (df = 6, p value = 3.68e−11), serum LDL (df = 6, p value < 2e−16), serum VLDL (df = 6, p value = 2.2e−13), serum triglycerides (df = 6, p value < 2e−16), blood sugar (df = 6, p value = 0.01857), serum glutamic pyruvic transaminase (S.G.P.T., df = 6, p value = 0.01189), serum glutamic oxaloacetic transaminase (S.G.O.T., df = 6, p value = 0.01239) but no significant difference found in weight gain (df = 6, p value = 0.166) and serum creatinine (df = 6, p value = 0.987). Furthermore, they enhanced IgA-mediated immunomodulation and influenced the gut colonization of probiotic LAB strains than the standard prebiotics, inulin. Thus, the study revealed that the FOSs from the storage tuber of D. alata possess some novel prebiotic that could contribute to human nutrition. This is the first report of the prebiotic FOS characterization from this plant.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Selma-Royo M, Tarrazó M, García-Mantrana I et al (2019) Shaping microbiota during the first 1000 days of life. Adv Exp Med Biol 1125:3–24. https://doi.org/10.1007/5584_2018_312

    Article  PubMed  Google Scholar 

  2. Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fei Y, Chen Z, Han S et al (2021) Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1958744

    Article  PubMed  Google Scholar 

  4. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435. https://doi.org/10.3390/nu5041417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gibson GR, Hutkins R, Sanders ME et al (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  6. Davani-Davari D, Negahdaripour M, Karimzadeh I et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8:92. https://doi.org/10.3390/foods8030092

    Article  PubMed Central  CAS  Google Scholar 

  7. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328. https://doi.org/10.1007/BF03180584

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Yang H, Huang H et al (2019) Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and dose–response meta-analysis of 33 randomized controlled trials. J Transl Med 17:410. https://doi.org/10.1186/s12967-019-02159-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rößle C, Ktenioudaki A, Gallagher E (2011) Inulin and oligofructose as fat and sugar substitutes in quick breads (scones): a mixture design approach. Eur Food Res Technol 233:167–181. https://doi.org/10.1007/s00217-011-1514-9

    Article  CAS  Google Scholar 

  10. Le Bourgot C, Apper E, Blat S, Respondek F (2018) Fructo-oligosaccharides and glucose homeostasis: a systematic review and meta-analysis in animal models. Nutr Metab (Lond) 15:9. https://doi.org/10.1186/s12986-018-0245-3

    Article  CAS  Google Scholar 

  11. Nie Y, Luo F (2021) Dietary fiber: an opportunity for a global control of hyperlipidemia. Oxid Med Cell Longev 2021:1–20. https://doi.org/10.1155/2021/5542342

    Article  CAS  Google Scholar 

  12. Boutron-Ruault M-C, Marteau P, Lavergne-Slove A et al (2005) Effects of a 3-mo Consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutri Cancer 53:160–168. https://doi.org/10.1207/s15327914nc5302_5

    Article  CAS  Google Scholar 

  13. Bruno-Barcena JM, Azcarate-Peril MA (2015) Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. J Funct Foods 12:92–108. https://doi.org/10.1016/j.jff.2014.10.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535:56–64. https://doi.org/10.1038/nature18846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Deng X, Ma J, Song M et al (2019) Effects of products designed to modulate the gut microbiota on hyperlipidaemia. Eur J Nutr 58:2713–2729. https://doi.org/10.1007/s00394-018-1821-z

    Article  PubMed  CAS  Google Scholar 

  16. Moreira Júnior RE, de Carvalho LM, dos Reis DC et al (2021) Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice. J Nutr Biochem 92:108622. https://doi.org/10.1016/j.jnutbio.2021.108622

    Article  PubMed  CAS  Google Scholar 

  17. Swanson KS, Gibson GR, Hutkins R et al (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17:687–701. https://doi.org/10.1038/s41575-020-0344-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J the Linn Soc 181(1):1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  19. Chandrasekara A, Josheph Kumar T (2016) Roots and tuber crops as functional foods: a Review on phytochemical constituents and their potential health benefits. Int J Food Sci. https://doi.org/10.1155/2016/3631647

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Z, Wang X, Liu C, Li J (2016) The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carb Poly 150:227–231. https://doi.org/10.1016/j.carbpol.2016.05.034

    Article  CAS  Google Scholar 

  21. Liu Y, Li H, Fan Y, Man S, Liu Z, Gao W, Wang T (2016) Antioxidant and antitumor activities of the extracts from Chinese yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds. J Food Sci 81(6):H1553–H1564. https://doi.org/10.1111/1750-3841.13322

    Article  PubMed  CAS  Google Scholar 

  22. Alves RML, Grossmann MVE, Silva RSSF (1999) Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemy 67:123–127. https://doi.org/10.1016/S0308-8146(99)00064-3

    Article  CAS  Google Scholar 

  23. Chou S-T, Chiang B-H, Chung Y-C et al (2006) Effects of storage temperatures on the antioxidative activity and composition of yam. Food Chem 98:618–623. https://doi.org/10.1016/j.foodchem.2005.06.039

    Article  CAS  Google Scholar 

  24. Hsu C-K, Yeh J-Y, Wei J-H (2011) Protective effects of the crude extracts from yam (Dioscorea alata) peel on tert-butylhydroperoxide-induced oxidative stress in mouse liver cells. Food Chem 126:429–434. https://doi.org/10.1016/j.foodchem.2010.11.004

    Article  CAS  Google Scholar 

  25. Liu X, Lu K, Yu J, Copeland L, Wang S, Wang S (2019) Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chem 284:118–124. https://doi.org/10.1016/j.foodchem.2019.01.025

    Article  PubMed  CAS  Google Scholar 

  26. Bandyopadhyay B, Mandal V, Mandal NC (2021) Partial characterization of novel inulin-like prebiotic fructooligosaccharides of Sechium edule (Jacq.) Sw. (Cucurbitaceae) tuberous roots. J Food Biochem. https://doi.org/10.1111/jfbc.13764

    Article  PubMed  Google Scholar 

  27. Nobre C, Teixeira JA, Rodrigues LR (2012) Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column. N Biotechnol 29:395–401. https://doi.org/10.1016/j.nbt.2011.11.006

    Article  PubMed  CAS  Google Scholar 

  28. Praznik W, Löppert R, Cruz Rubio JM et al (2013) Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. azul. Carbohydr Res 381:64–73. https://doi.org/10.1016/j.carres.2013.08.025

    Article  PubMed  CAS  Google Scholar 

  29. Flamm G, Glinsmann W, Kritchevsky D et al (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353–362. https://doi.org/10.1080/20014091091841

    Article  PubMed  CAS  Google Scholar 

  30. Kassambara A Practical statistics in R for comparing groups: numerical variables. 5

  31. Lingyun W, Jianhua W, Xiaodong Z et al (2007) Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. J Food Eng 79:1087–1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028

    Article  CAS  Google Scholar 

  32. Ronkart SN, Paquot M, Deroanne C et al (2010) Development of gelling properties of inulin by microfluidization. Food Hydrocoll 24:318–324. https://doi.org/10.1016/j.foodhyd.2009.10.009

    Article  CAS  Google Scholar 

  33. Matusek A, Merész P, Le TKD, Örsi F (2009) Effect of temperature and pH on the degradation of fructo-oligosaccharides. Eur Food Res Technol 228:355–365. https://doi.org/10.1007/s00217-008-0941-8

    Article  CAS  Google Scholar 

  34. Kim Y, Wang SS (2001) Kinetic study of thermally induced inulin gel. J Food Sci 66:991–997. https://doi.org/10.1111/j.1365-2621.2001.tb08224.x

    Article  CAS  Google Scholar 

  35. Ku Y, Jansen O, Oles CJ et al (2003) Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chem 81:125–132. https://doi.org/10.1016/S0308-8146(02)00393-X

    Article  CAS  Google Scholar 

  36. Paseephol T, Small D, Sherkat F (2007) Process optimization for fractionating Jerusalem artichoke fructans with ethanol using response surface methodology. Food Chem 104:73–80. https://doi.org/10.1016/j.foodchem.2006.10.078

    Article  CAS  Google Scholar 

  37. Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17:770–775. https://doi.org/10.1016/j.idairyj.2006.10.006

    Article  CAS  Google Scholar 

  38. Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37:281–284. https://doi.org/10.1046/j.1472-765x.2003.01398.x

    Article  PubMed  CAS  Google Scholar 

  39. Vulevic J, Rastall RA, Gibson GR (2004) Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol Lett 236:153–159. https://doi.org/10.1111/j.1574-6968.2004.tb09641.x

    Article  PubMed  CAS  Google Scholar 

  40. Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carb Polym 76:30–35. https://doi.org/10.1016/j.carbpol.2008.09.018

    Article  CAS  Google Scholar 

  41. Cao W, Li X-Q, Liu L et al (2006) Structure of an antitumor polysaccharide from Angelica sinensis (Oliv.) Diels. Carb Polym 66:149–159. https://doi.org/10.1016/j.carbpol.2006.02.034

    Article  CAS  Google Scholar 

  42. Černá M, Barros AS, Nunes A et al (2003) Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carb Polym 51:383–389. https://doi.org/10.1016/S0144-8617(02)00259-X

    Article  Google Scholar 

  43. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 3:151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

    Article  CAS  Google Scholar 

  44. Naumann A, Navarro-González M, Peddireddi S et al (2005) Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genet Biol 42:829–835. https://doi.org/10.1016/j.fgb.2005.06.003

    Article  PubMed  Google Scholar 

  45. Klaus A, Kozarski M, Niksic M et al (2011) Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT Food Sci Technol 44:2005–2011. https://doi.org/10.1016/j.lwt.2011.05.010

    Article  CAS  Google Scholar 

  46. Jalaludin I, Sudin AH, Elangovan D et al (2020) Analysis of free oligosaccharides (fOS) from wild-type Saccharomyces cerevisiae (Baker’s Yeast) using two different extraction methods. JSM 49:85–92. https://doi.org/10.17576/jsm-2020-4901-10

    Article  CAS  Google Scholar 

  47. Prošek M, Simonovska B, Golc-Wondra A et al (2003) Use of HPTLC for quantitative evaluation of inulin in food products. J Planar Chromat 16:58–62. https://doi.org/10.1556/JPC.16.2003.1.12

    Article  Google Scholar 

  48. Belviso S, Giordano M, Dolci P, Zeppa G (2009) In vitro cholesterol-lowering activity of Lactobacillus plantarum and Lactobacillus paracasei strains isolated from the Italian Castelmagno PDO cheese. Dairy Sci Technol 89:169–176. https://doi.org/10.1051/dst/2009004

    Article  CAS  Google Scholar 

  49. Choi EA, Hae CC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimch. Lebensm Wiss Technol 62:210–217. https://doi.org/10.1016/j.lwt.2015.01.019

    Article  CAS  Google Scholar 

  50. Tok E, Aslim B (2010) Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 54:257–264. https://doi.org/10.1111/j.1348-0421.2010.00219.x

    Article  PubMed  CAS  Google Scholar 

  51. Pereira DIA, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693. https://doi.org/10.1128/AEM.68.9.4689-4693.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kimoto-Nira H, Mizumachi K, Nomura M, Kobayashi M, Fujita Y, Okamoto T, Suzuki I, Tsuji NM, Kurisaki JI, Ohmomo S (2007) Lactococcus sp. as potential probiotic lactic acid bacteria. Jpn Agric Res Q JARQ 41(3):181–189. https://doi.org/10.6090/jarq.41.181

    Article  CAS  Google Scholar 

  53. Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J Dairy Sci 88:55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X

    Article  PubMed  CAS  Google Scholar 

  54. Mandal V, Sen SK, Mandal NC (2009) Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World J Microbiol Biotechnol 25:1837–1847. https://doi.org/10.1007/s11274-009-0085-4

    Article  CAS  Google Scholar 

  55. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522. https://doi.org/10.3390/ijms11062499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Khorasani AC, Shojaosadati SA (2019) Intestinal adsorption of glucose, cholesterol and bile salt by simultaneous incorporation of edible microbiosorbent and intestinal bacteria. Biocat Agricult Biotech 19:101119. https://doi.org/10.1016/j.bcab.2019.101119

    Article  Google Scholar 

  57. Wu W, Hu J, Gao H et al (2020) The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chem 332:127372. https://doi.org/10.1016/j.foodchem.2020.127372

    Article  PubMed  CAS  Google Scholar 

  58. Campos D, Betalleluz-Pallardel I, Chirinos R et al (2012) Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem 135:1592–1599. https://doi.org/10.1016/j.foodchem.2012.05.088

    Article  PubMed  CAS  Google Scholar 

  59. Mesa MD, Silván JM, Olza J, Gil Á, del Castillo MD (2008) Antioxidant properties of soy protein–fructooligosaccharide glycation systems and its hydrolyzates. Food Res Internat 41(6):606–615. https://doi.org/10.1016/j.foodres.2008.03.010

    Article  CAS  Google Scholar 

  60. Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O’Riordan M, O’Sullivan GC, Pool-Zobel B, Rechkemmer G (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85(2):488–496. https://doi.org/10.1093/ajcn/85.2.488

    Article  PubMed  CAS  Google Scholar 

  61. Zaky EA (2009) Physiological response to diets fortified with Jerusalem artichoke tubers (Helianthus tuberosus L.) powder by diabetic rats. Am-Euras J Agricul Environ Sci 5:682–688

    CAS  Google Scholar 

  62. Kim M, Shin HK (1998) The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and faecal lipid excretion in rats. J Nutr 128:1731–1736. https://doi.org/10.1093/jn/128.10.1731

    Article  PubMed  CAS  Google Scholar 

  63. Russo F, Riezzo G, Chiloiro M et al (2010) Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Curr Pharma Des 16:825–831. https://doi.org/10.2174/138161210790883570

    Article  CAS  Google Scholar 

  64. Meyer D, Stasse-Wolthuis M (2009) The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 63:1277–1289. https://doi.org/10.1038/ejcn.2009.64

    Article  PubMed  CAS  Google Scholar 

  65. Zhang X, Liu S, Lu Y et al (2019) Immunomodulatory activity of a fructooligosaccharide isolated from burdock roots. RSC Adv 9:11092–11100. https://doi.org/10.1039/C8RA10091H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoseinifar SH, Ahmadi A, Raeisi M et al (2017) Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquacult Res 48:3298–3307. https://doi.org/10.1111/are.13156

    Article  CAS  Google Scholar 

  67. Tokunaga T (2004) Novel physiological function of fructooligosaccharides. BioFactors 21:89–94. https://doi.org/10.1002/biof.552210117

    Article  PubMed  CAS  Google Scholar 

  68. Olaniyan MF, Okunola PO (2019) Biochemical alterations in plasma total bile acid, creatinine, sodium, potassium, chloride, and bicarbonate in rabbits overdosed with ibuprofen and supplemented with guava leaf (Psidium guajava) extracts. BLDE Univ J Health Sci 4(1):11. https://doi.org/10.4103/bjhs.bjhs_24_18

    Article  Google Scholar 

  69. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9:43–52. https://doi.org/10.1016/S0958-6946(99)00043-6

    Article  Google Scholar 

  70. Kolida S, Meyer D, Gibson GR (2007) A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur J Clin Nutr 61:1189–1195. https://doi.org/10.1038/sj.ejcn.1602636

    Article  PubMed  CAS  Google Scholar 

  71. Menne E, Guggenbuhl N, Roberfroid M (2000) Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 130(5):1197–1199. https://doi.org/10.1093/jn/130.5.1197

    Article  PubMed  CAS  Google Scholar 

  72. Knol J, Scholtens P, Kafka C et al (2005) Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Ped Gastroenterol Nutr 40:36–42

    Article  CAS  Google Scholar 

  73. Sook-He K, Lee D, Meyer D (2007) Supplementation of infant formula with native inulin has a prebiotic effect in formula-fed babies. Asia Pac J Clin Nutr 16(1):172

    Google Scholar 

  74. Mazraeh R, Azizi-Soleiman F, Jazayeri SMHM, Noori SMA (2019) Effect of inulin-type fructans in patients undergoing cancer treatments: a systematic review. Pak J Med Sci. https://doi.org/10.12669/pjms.35.2.701

    Article  PubMed  PubMed Central  Google Scholar 

  75. Habib NC, Honoré SM, Genta SB, Sánchez SS (2011) Hypolipidemic effect of Smallanthus sonchifolius (yacon) roots on diabetic rats: Biochemical approach. Chemico-Biol Interact 194:31–39. https://doi.org/10.1016/j.cbi.2011.08.009

    Article  CAS  Google Scholar 

  76. Sun S, Araki Y, Hanzawa F et al (2021) High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. J Nutr Biochem 93:108621. https://doi.org/10.1016/j.jnutbio.2021.108621

    Article  PubMed  CAS  Google Scholar 

  77. Hempel S, Jacob A, Rohm H (2006) Influence of inulin modification and flour type on the sensory quality of prebiotic wafer crackers. Eur Food Res Technol 224:335–341. https://doi.org/10.1007/s00217-006-0326-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CSIR-CMERI, Durgapur, West Bengal, India for ESI-MS, FT-IR, HPTLC, and SEM studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Biplab Bandyopadhyay: Data curation; formal analysis; investigation; methodology; validation; writing—original draft. Prashanta Kumar Mitra: Statistical analysis and data analysis for its presentation. Vivekananda Mandal: conceptualization; formal analysis; resources; software; supervision; validation; visualization; writing—review and editing. Narayan C. Mandal: Conceptualization; funding acquisition; project administration; resources; supervision; visualization; writing review and editing.

Corresponding authors

Correspondence to Vivekananda Mandal or Narayan Chandra Mandal.

Ethics declarations

Conflict of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethics approval

The animal experimentation has been conducted following the Institutional Animal Ethics Committee guideline, Visva-Bharati University, India (vide Ref. No.: IACE/VB/2018/6; Dated: 24-04-2018).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, B., Mitra, P.K., Mandal, V. et al. Novel fructooligosaccharides of Dioscorea alata L. tuber have prebiotic potentialities. Eur Food Res Technol 247, 3099–3112 (2021). https://doi.org/10.1007/s00217-021-03872-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03872-1

Keywords

Navigation