Skip to main content

Advertisement

Log in

Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: a non-dairy alternative in food systems

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Replacement of dairy proteins by plant proteins is a current trend to produce stable colloidal systems critical to the food and beverage industry. In this study, we compared commercial samples of lentil protein concentrate (LPC) and whey protein concentrate (WPC) to stabilize ultrasound-produced sunflower oil-in-water emulsions. The effects of high-intensity ultrasound (HIUS) (0, 300, 600, 900, and 1200 W) on the LPC-stabilized emulsion properties were evaluated and compared to the emulsion stabilized by WPC, with the aim to assess the challenges and drawbacks of using LPC. Steric stabilization mechanism predominated over electrostatic mechanism. The interfacial tension results showed the ability of LPC to adsorb into the oil–water interface. HIUS processing reduced surface charge density of protein-adsorbed oil droplets, decreasing its contribution to kinetic stabilization. The mean droplet diameter of fresh emulsions showed a significant reduction from 5.44 µm at 0 W nominal power to 2.07 µm at 600 W. However, HIUS process intensification by increasing nominal power up to 1200 W increased mean droplet diameter due to starch and dietary fiber aggregation. Although LPC and WPC had distinctive technological properties due to their composition, our results demonstrated that LPC is a promising plant protein to stabilize colloidal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silva EK, Gomes MTMS, Hubinger MD et al (2015) Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocoll 47:1–13. https://doi.org/10.1016/j.foodhyd.2015.01.001

    Article  CAS  Google Scholar 

  2. Moore P (1984) Emulsion stability, In: McClements DJ (ed) Food emulsions: principles, practices, and techniques. CRC Press, pp 289–382

    Google Scholar 

  3. Ozturk B, McClements DJ (2016) Progress in natural emulsifiers for utilization in food emulsions. Curr Opin Food Sci 7:1–6. https://doi.org/10.1016/j.cofs.2015.07.008

    Article  Google Scholar 

  4. Hoffmann H, Reger M (2014) Emulsions with unique properties from proteins as emulsifiers. Adv Colloid Interface Sci 205:94–104. https://doi.org/10.1016/j.cis.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  5. Dickinson E (2010) Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surfaces B Biointerfaces 81:130–140. https://doi.org/10.1016/j.colsurfb.2010.06.033

    Article  PubMed  CAS  Google Scholar 

  6. Nylander T, Arnebrant T, Cárdenas M, Bos M (2019) Protein/emulsifier interactions. In: Hasenhuettl GHR (ed) Food emulsifiers and their applications, 2nd edn. Springer, pp 101–192

    Google Scholar 

  7. Szilagyi A, Walker C, Thomas MG (2019) Lactose intolerance and other related food sensitivities. Lactose: evolutionary role, health effects, and applications. Academic Press, Inc., pp 113–153

    Chapter  Google Scholar 

  8. Avramenko NA, Low NH, Nickerson MT (2013) The effects of limited enzymatic hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. Food Res Int 51:162–169. https://doi.org/10.1016/j.foodres.2012.11.020

    Article  CAS  Google Scholar 

  9. Silva EK, Azevedo VM, Cunha RL et al (2016) Ultrasound-assisted encapsulation of annatto seed oil: whey protein isolate versus modified starch. Food Hydrocoll 56:71–83. https://doi.org/10.1016/j.foodhyd.2015.12.006

    Article  CAS  Google Scholar 

  10. de Fernandes RV, B, Borges SV, Silva EK, et al (2016) Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind Crops Prod 94:413–423. https://doi.org/10.1016/j.indcrop.2016.09.010

    Article  CAS  Google Scholar 

  11. Albano KM, Nicoletti VR (2018) Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrason Sonochem 41:562–571. https://doi.org/10.1016/j.ultsonch.2017.10.018

    Article  PubMed  CAS  Google Scholar 

  12. Huerta RR, Silva EK, Ekaette I et al (2020) High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrason Sonochem 64:104759. https://doi.org/10.1016/j.ultsonch.2019.104759

    Article  PubMed  CAS  Google Scholar 

  13. Ojha KS, Mason TJ, O’Donnell CP et al (2017) Ultrasound technology for food fermentation applications. Ultrason Sonochem 34:410–417. https://doi.org/10.1016/j.ultsonch.2016.06.001

    Article  PubMed  CAS  Google Scholar 

  14. Abbasi F, Samadi F, Jafari SM et al (2019) Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrason Sonochem 50:208–217. https://doi.org/10.1016/j.ultsonch.2018.09.014

    Article  PubMed  CAS  Google Scholar 

  15. Huerta RR, Silva EK, El-Bialy T, Saldaña MDA (2020) Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. Ultrason Sonochem 64:104845. https://doi.org/10.1016/j.ultsonch.2019.104845

    Article  PubMed  CAS  Google Scholar 

  16. Ma W, Wang J, Xu X et al (2019) Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res Int 121:247–256. https://doi.org/10.1016/j.foodres.2019.03.024

    Article  PubMed  CAS  Google Scholar 

  17. Taha A, Hu T, Zhang Z et al (2018) Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrason Sonochem 49:283–293. https://doi.org/10.1016/j.ultsonch.2018.08.020

    Article  PubMed  CAS  Google Scholar 

  18. Karaca AC, Low N, Nickerson M (2011) Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res Int 44:2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012

    Article  CAS  Google Scholar 

  19. Gumus CE, Decker EA, McClements DJ (2017) Formation and stability of ω-3 oil emulsion-based delivery systems using plant proteins as emulsifiers: Lentil, pea, and faba bean proteins. Food Biophys 12:186–197. https://doi.org/10.1007/s11483-017-9475-6

    Article  Google Scholar 

  20. Silva EK, Arruda HS, Pastore GM et al (2020) Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrason Sonochem 63:104942. https://doi.org/10.1016/j.ultsonch.2019.104942

    Article  PubMed  CAS  Google Scholar 

  21. Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:2–6. https://doi.org/10.1016/1350-4177(94)90004-3

    Article  Google Scholar 

  22. Billmeyer FW, Hammond HK (1990) ASTM standards on color-difference measurements. Color Res Appl 15:206–209. https://doi.org/10.1002/col.5080150406

    Article  Google Scholar 

  23. Pearce KN, Kinsella JE (1978) Emulsifying properties of proteins: evaluation of a turbidimetric technique. J Agric Food Chem 26:716–723. https://doi.org/10.1021/jf60217a041

    Article  CAS  Google Scholar 

  24. Joshi M, Adhikari B, Aldred P et al (2012) Interfacial and emulsifying properties of lentil protein isolate. Food Chem 134:1343–1353. https://doi.org/10.1016/j.foodchem.2012.03.029

    Article  PubMed  CAS  Google Scholar 

  25. Jafari SM, Beheshti P, Assadpoor E (2012) Rheological behavior and stability of d-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. J Food Eng 109:1–8. https://doi.org/10.1016/j.jfoodeng.2011.10.016

    Article  CAS  Google Scholar 

  26. Joshi M, Adhikari B, Aldred P et al (2011) Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem 129:1513–1522. https://doi.org/10.1016/j.foodchem.2011.05.131

    Article  CAS  Google Scholar 

  27. Chang C, Tu S, Ghosh S, Nickerson MT (2015) Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Res Int 77:360–367. https://doi.org/10.1016/j.foodres.2015.08.012

    Article  CAS  Google Scholar 

  28. Ladjal-Ettoumi Y, Boudries H, Chibane M, Romero A (2016) Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophys 11:43–51. https://doi.org/10.1007/s11483-015-9411-6

    Article  Google Scholar 

  29. Morr CV, Ha EYW (1993) Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr 33:431–476. https://doi.org/10.1080/10408399309527643

    Article  PubMed  CAS  Google Scholar 

  30. Dickinson E, Radford SJ, Golding M (2003) Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and non-ionic surfactant. Food Hydrocoll 17:211–220. https://doi.org/10.1016/S0268-005X(02)00055-3

    Article  CAS  Google Scholar 

  31. McClements DJ (2007) Critical review of techniques and methodologies for characterization of emulsion stability. Crit Rev Food Sci Nutr 47:611–649. https://doi.org/10.1080/10408390701289292

    Article  PubMed  CAS  Google Scholar 

  32. Acedo-Carrillo JI, Rosas-Durazo A, Herrera-Urbina R et al (2006) Zeta potential and drop growth of oil in water emulsions stabilized with mesquite gum. Carbohydr Polym 65:327–336. https://doi.org/10.1016/j.carbpol.2006.01.016

    Article  CAS  Google Scholar 

  33. Jafari SM, He Y, Bhandari B (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82:478–488. https://doi.org/10.1016/j.jfoodeng.2007.03.007

    Article  Google Scholar 

  34. Kaltsa O, Michon C, Yanniotis S, Mandala I (2013) Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrason Sonochem 20:881–891. https://doi.org/10.1016/j.ultsonch.2012.11.011

    Article  PubMed  CAS  Google Scholar 

  35. Koocheki A, Kadkhodaee R, Mortazavi SA et al (2009) Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocoll 23:2416–2424. https://doi.org/10.1016/j.foodhyd.2009.06.021

    Article  CAS  Google Scholar 

  36. Aslan D, Dogan M (2018) The influence of ultrasound on the stability of dairy-based, emulsifier-free emulsions: rheological and morphological aspect. Eur Food Res Technol 244:409–421. https://doi.org/10.1007/s00217-017-2966-3

    Article  CAS  Google Scholar 

  37. Dalgleish DG (1997) Adsorption of protein and the stability of emulsions. Trends Food Sci Technol 8:1–6. https://doi.org/10.1016/S0924-2244(97)01001-7

    Article  CAS  Google Scholar 

  38. McClements DJ (2002) Colloidal basis of emulsion color. Curr Opin Colloid Interface Sci 7:451–455. https://doi.org/10.1016/S1359-0294(02)00075-4

    Article  CAS  Google Scholar 

  39. Chantrapornchai W, Clydesdale F, McClements DJ (1999) Influence of droplet characteristics on the optical properties of colored oil-in-water emulsions. Colloids Surfaces A Physicochem Eng Asp 155:373–382. https://doi.org/10.1016/S0927-7757(99)00004-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC, #04371-2019) and the vitamin research fund at the University of Alberta for funding this research. Eric Keven Silva thanks FAPESP (2018/14550-6) for his postdoctoral assistantship at the University of Alberta. The authors thank Dr. Mehmet C. Tulbek from AGT Foods (Saskatoon, SK, Canada) for providing the lentil protein concentrate, and Dr. Xu at the University of Alberta for allowing us to use the optical tensiometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marleny D. A. Saldaña.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekala, S., Silva, E.K. & Saldaña, M.D.A. Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: a non-dairy alternative in food systems. Eur Food Res Technol 248, 185–196 (2022). https://doi.org/10.1007/s00217-021-03871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03871-2

Keywords

Navigation