Skip to main content

Impact of incorporating olive leaves during the industrial extraction of cv. Arbequina oils on the physicochemical–sensory quality and health claim fulfillment

Abstract

The effect of olive leaves addition (1%, w/w, cvs. Arbequina or Santulhana), during the industrial extraction of Arbequina oils, on their physicochemical, color, phenolic profile, and sensory characteristics, was studied. Leaves’ incorporation reduced the primary oxidation (peroxide value by 33% and K232 by 17%) and increased the oxidative stability (19%), with the impact being more pronounced for Arbequina leaves. For these latter oils, leaves incorporation increased the total phenolic content (293 ± 9 mg GAE/kg), which became richer in secoiridoid derivatives (143.7 ± 3.0 mg/kg). Also, only Arbequina oils extracted with their own leaves supported the health claim regarding the protection of blood lipids against oxidative stress (hydroxytyrosol and tyrosol derivatives content greater than 5 mg per 20 g of olive oil). On the other hand, the incorporation of leaves from cvs. Arbequina and Santulhana during extraction enhanced the bitterness (55–59%) and decreased the pungency (25–33%). Santulhana leaves promoted an increase of the green-fruitiness (5.3 ± 0.5), while Arbequina leaves enhanced the oils’ sweetness (7.0 ± 0.4). Moreover, a potentiometric laboratory-made electronic tongue was applied, as a taste sensor device, being capable of successfully discriminating Arbequina oils extracted without or with addition of leaves, allowing the identification of (un)deliberated leaves incorporation during oils’ extraction. Lastly, it was found that the quality and composition of Arbequina oils industrially extracted were leaf cultivar dependent, with the low level of phenolics of control oils promoted by the incorporation of Arbequina leaves.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data and material

Data will be available upon request.

References

  1. Sacchi R, Della Medaglia D, Paduano A, Caporaso N, Genovese A (2017) Characterisation of lemon-flavoured olive oils. LWT - Food Sci Technol 79:326–332. https://doi.org/10.1016/j.lwt.2017.01.025

    Article  CAS  Google Scholar 

  2. European Commission Regulation EC No 61/2011 (2011) Amending regulation No 2568/91/EEC on the characteristics of olive oil and olive pomace oil and on the relevant methods of analysis. Off J Eur Union L23:1–13

    Google Scholar 

  3. EC Regulation No 432/2012 (2012) Establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Eur J Eur Union L130:1–40

    Google Scholar 

  4. Benavente-García O, Castillo J, Lorente J, Ortunõ A, Del Rio JA (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462. https://doi.org/10.1016/S0308-8146(99)00221-6

    Article  Google Scholar 

  5. Caponio F, Difonzo G, Calasso M, Cosmai L, De Angelis M (2019) Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Res Int 116:1306–1317. https://doi.org/10.1016/j.foodres.2018.10.020

    Article  PubMed  CAS  Google Scholar 

  6. Sanmartin C, Venturi F, Sgherri C, Nari A, Macaluso M, Flamini G, Quartacci M, Taglieri I, Andrich G, Zinnai A (2018) The effects of packaging and storage temperature on the shelf-life of extra virgin olive oil. Heliyon 4:e00888. https://doi.org/10.1016/j.heliyon.2018.e00888

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taghvaei M, Jafari SM (2015) Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J Food Sci Technol 52:1272–1282. https://doi.org/10.1007/s13197-013-1080-1

    Article  PubMed  CAS  Google Scholar 

  8. Marx ÍMG, Rodrigues N, Veloso ACA, Casal S, Pereira JA, Peres AM (2021) Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2020.110426

    Article  Google Scholar 

  9. Marx ÍMG, Casal S, Rodrigues N, Pinho T, Veloso ACA, Pereira JA, Peres AM (2021) Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chem 337:127726. https://doi.org/10.1016/j.foodchem.2020.127726

    Article  PubMed  CAS  Google Scholar 

  10. Vidal AM, Alcalá S, Ocaña MT, De Torres A, Espínola F, Moya M (2020) Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: pilot plant’s proposal. Eur Food Res Technol 246:1459–1468. https://doi.org/10.1007/s00217-020-03503-1

    Article  CAS  Google Scholar 

  11. Tarchoune I, Sgherri C, Eddouzi J, Zinnai A, Quartacci MF, Zarrouk M (2019) Olive leaf addition increases olive oil nutraceutical properties. Molecules 24:545. https://doi.org/10.3390/molecules24030545

    Article  PubMed Central  CAS  Google Scholar 

  12. Ryan D, Antolovich M, Prenzler P, Robards K, Lavee S (2002) Biotransformations of phenolic compounds in Olea europaea L. Sci Hortic 92:147–176. https://doi.org/10.1016/S0304-4238(01)00287-4

    Article  CAS  Google Scholar 

  13. Nenadis N, Wang LF, Tsimidou MZ, Zhang HY (2005) Radical scavenging potential of phenolic compounds encountered in O. europaea products as indicated by calculation of bond dissociation enthalpy and ionization potential values. J Agric Food Chem 53:295–299. https://doi.org/10.1021/jf048776x

    Article  PubMed  CAS  Google Scholar 

  14. Malheiro R, Casal S, Teixeira H, Bento A, Pereira JA (2013) Effect of olive leaves addition during the extraction process of overmature fruits on olive oil quality. Food Bioprocess Technol 6:509–521. https://doi.org/10.1007/s11947-011-0719-z

    Article  CAS  Google Scholar 

  15. Ammar S, Kelebek H, Zribi A, Abichou M, Selli S, Bouaziz M (2017) LC-DAD/ESI-MS/MS characterization of phenolic constituents in Tunisian extra-virgin olive oils: effect of olive leaves addition on chemical composition. Food Res Int 100:477–485. https://doi.org/10.1016/j.foodres.2016.11.001

    Article  PubMed  CAS  Google Scholar 

  16. Sanmartin C, Taglieri I, Macaluso M, Sgherri C, Ascrizzi R, Flamini G, Venturi F, Quartacci MF, Luro F, Curk F, Pistelli L, Zinnai A (2019) Cold-pressing olive oil in the presence of cryomacerated leaves of olea or citrus: nutraceutical and sensorial features. Molecules 24:2625. https://doi.org/10.3390/molecules24142625

    Article  PubMed Central  Google Scholar 

  17. Sevim D, Tuncay O (2013) Effect of olive leaves addition before extraction of turkish olive cultivars on olive oil minor components and antioxidant activity. Open Access Sci Rep 2:1–8. https://doi.org/10.4172/scientificreports

    Article  Google Scholar 

  18. Di Giovacchino L, Angerosa F, Di Giacinto L (1996) Effect of mixing leaves with olives on organoleptic quality of oil obtained by centrifugation. J Am Oil Chem Soc 73:371–374. https://doi.org/10.1007/BF02523433

    Article  Google Scholar 

  19. Borges TH, Serna A, López LC, Lara L, Nieto R, Seiquer I (2019) Composition and antioxidant properties of Spanish extra virgin olive oil regarding cultivar, harvest year and crop stage. Antioxidants 8:217. https://doi.org/10.3390/antiox8070217

    Article  PubMed Central  CAS  Google Scholar 

  20. Mansouri F, Benmoumen A, Richard G, Fauconnier ML, Sindic M, Serghini-Caid H, Elamrani A (2016) Characterization of monovarietal virgin olive oils from introduced cultivars in eastern Morocco. Riv Ital delle Sostanze Grasse 93:21–30

    CAS  Google Scholar 

  21. Tous J (2018) High planting density trial with olive cultivar “Arbequina.” Acta Hortic 1199:285–290. https://doi.org/10.17660/ActaHortic.2018.1199.44

    Article  Google Scholar 

  22. Rodrigues N, Baptista P, Casal S, Pereira J (2018) Cv. Santulhana – Uma cultivar de oliveira a redescobrir. Azeites de Portugal. Guia 2018:58

    Google Scholar 

  23. European Union Commission RC 1989/2003 (2003) Amending regulation EEC 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis. Off J Eur Communities L 295:57

    Google Scholar 

  24. Hermoso M, Uceda M, García A, Morales B, Frias ML, Fernandez A (1991) Elaboración de Aceite de Calidad. Cons Agric y Pesca, Ser Apunt 5:173

    Google Scholar 

  25. Di Giovacchino L, Costantini N, Ferrante ML, Serraiocco A (2002) Influence of malaxation time of olive paste on oil extraction yields and chemical and organoleptic characteristics of virgin olive oil obtained by a centrifugal decanter at water saving. Grasas Aceites 53:179–186. https://doi.org/10.3989/gya.2002.v53.i2.302

    Article  Google Scholar 

  26. Rodrigues N, Marx ÍMG, Casal S, Dias LG, Veloso ACA, Pereira JA, Peres AM (2019) Application of an electronic tongue as a single-run tool for olive oils’ physicochemical and sensory simultaneous assessment. Talanta 197:363–373. https://doi.org/10.1016/j.talanta.2019.01.055

    Article  PubMed  CAS  Google Scholar 

  27. Capannesi C, Palchetti I, Mascini M, Parenti A (2000) Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem 71:553–562. https://doi.org/10.1016/S0308-8146(00)00211-9

    Article  CAS  Google Scholar 

  28. Minguez-Mosquera IM, Rejano-Navarro L, Gandul-Rojas B, SanchezGomez AH, Garrido-Fernandez J (1991) Color-pigment correlation in virgin olive oil. J Am Oil Chem Soc 68:332–336. https://doi.org/10.1007/BF02657688

    Article  CAS  Google Scholar 

  29. Zamora R, Olmo C, Navarro JL, Hidalgo FJ (2004) Contribution of phospholipid pyrrolization to the color reversion produced during deodorization of poorly degummed vegetable oils. J Agric Food Chem 52:4166–4171. https://doi.org/10.1021/jf049864k

    Article  PubMed  CAS  Google Scholar 

  30. International Olive Council (2017) Determination of biophenols in olive oils by HPLC, COI/T.20/Doc No 29/Rev.1. 29, pp 1–8. https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-29-Rev-1-2017.pdf

  31. Klen TJ, Golc Wondra A, Vrhovšek U, Mozetič Vodopivec B (2015) Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J Agric Food Chem 63:3859–3872. https://doi.org/10.1021/jf506345q

    Article  PubMed  CAS  Google Scholar 

  32. Romero C, Brenes M (2012) Analysis of total contents of hydroxytyrosol and tyrosol in olive oils. J Agric Food Chem 60:9017–9022. https://doi.org/10.1021/jf3026666

    Article  PubMed  CAS  Google Scholar 

  33. Mastralexi A, Nenadis N, Tsimidou MZ (2014) Addressing analytical requirements to support health claims on “olive oil polyphenols” (EC regulation 432/2012). J Agric Food Chem 62:2459–2461. https://doi.org/10.1021/jf5005918

    Article  PubMed  CAS  Google Scholar 

  34. Tsimidou MZ, Nenadis N, Mastralexi A, Servili M, Butinar B, Vichi S, Winkelmann O, García-González D, Toschi TG (2019) Toward a harmonized and standardized protocol for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO). The pros of a fit for the purpose ultra high performance liquid chromatography (UHPLC) procedure. Molecules 24:2429. https://doi.org/10.3390/molecules24132429

    Article  PubMed Central  CAS  Google Scholar 

  35. Rodrigues N, Casal S, Peres AM, Baptista P, Pereira JA (2020) Seeking for sensory differentiated olive oils? The urge to preserve old autochthonous olive cultivars. Food Res Int 128:108759. https://doi.org/10.1016/j.foodres.2019.108759

    Article  PubMed  CAS  Google Scholar 

  36. International Olive Council (2005) Method for the organoleptic assessment of virgin olive oil applying to use a designation of origin, COI/T.20/Doc. No. 22, pp 1–29. https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-22-2005-Eng-1.pdf

  37. Santos KA, Filho OPA, Aguiar CM, Milinsk MC, Sampaio SC, Palú F, da Silva EA (2017) Chemical composition, antioxidant activity and thermal analysis of oil extracted from favela (Cnidoscolus quercifolius) seeds. Ind Crops Prod 97:368–373. https://doi.org/10.1016/j.indcrop.2016.12.045

    Article  CAS  Google Scholar 

  38. Guclu G, Kelebek H, Selli S (2021) Chapter 26 - Antioxidant activity in olive oils. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention, 2nd edn. Academic Press, pp 313–325. https://doi.org/10.1016/B978-0-12-819528-4.00031-6

  39. Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A (2014) Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 3:1–23. https://doi.org/10.3390/antiox3010001

    Article  CAS  Google Scholar 

  40. Gómez-Alonso S, Mancebo-Campos V, Salvador MD, Fregapane G (2007) Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem 100:36–42. https://doi.org/10.1016/j.foodchem.2005.09.006

    Article  CAS  Google Scholar 

  41. Özcan MM, Matthäus B (2017) A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol 243:89–99. https://doi.org/10.1007/s00217-016-2726-9

    Article  CAS  Google Scholar 

  42. Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2016) From olive fruits to olive oil: phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int J Mol Sci 17:337. https://doi.org/10.3390/ijms17030337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Meirinhos J, Silva BM, Valentão P, Seabra RM, Pereira JA, Dias A, Andrade PB, Ferreres F (2005) Analysis and quantification of flavonoidic compounds from Portuguese olive (olea europaea L.) leaf cultivars. Nat Prod Res 19:189–195. https://doi.org/10.1080/14786410410001704886

    Article  PubMed  CAS  Google Scholar 

  44. Ghomari O, Sounni F, Massaoudi Y, Ghanam J, Kaitouni LBD, Merzouki M, Benlemlih M (2019) Phenolic profile (HPLC-UV) of olive leaves according to extraction procedure and assessment of antibacterial activity. Biotechnol Rep 23:e00347. https://doi.org/10.1016/j.btre.2019.e00347

    Article  Google Scholar 

  45. Borges TH, Pereira JA, Cabrera-Vique C, Seiquer I (2017) Study of the antioxidant potential of Arbequina extra virgin olive oils from Brazil and Spain applying combined models of simulated digestion and cell culture markers. J Funct Foods 37:209–218. https://doi.org/10.1016/j.jff.2017.07.059

    Article  CAS  Google Scholar 

  46. Bajoub A, Medina-Rodríguez S, Gómez-Romero M, Ajal EA, Bagur-González MG, Fernández-Gutiérrez A, Carrasco-Pancorbo A (2017) Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chem 215:245–255. https://doi.org/10.1016/j.foodchem.2016.07.140

    Article  PubMed  CAS  Google Scholar 

  47. Loubiri A, Taamalli A, Talhaoui N, Mohamed S, Carretero A, Zarrouk M (2017) Usefulness of phenolic profile in the classification of extra virgin olive oils from autochthonous and introduced cultivars in Tunisia. Eur Food Res Technol 243:467–479. https://doi.org/10.1007/s00217-016-2760-7

    Article  CAS  Google Scholar 

  48. Bakhouche A, Lozano-Sánchez J, Beltrán-Debón R, Joven J, Segura-Carretero A, Fernández-Gutiérrez A (2013) Phenolic characterization and geographical classification of commercial Arbequina extra-virgin olive oils produced in southern Catalonia. Food Res Int 50:401–408. https://doi.org/10.1016/j.foodres.2012.11.001

    Article  CAS  Google Scholar 

  49. Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro GF, Morozzi G (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr A 1054:113–127. https://doi.org/10.1016/j.chroma.2004.08.070

    Article  PubMed  CAS  Google Scholar 

  50. Andrewes P, Busch JLHC, De Joode T, Groenewegen A, Alexandre H (2003) Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J Agric Food Chem 51:1415–1420. https://doi.org/10.1021/jf026042j

    Article  PubMed  CAS  Google Scholar 

  51. Romero MP, Tovar MJ, Girona J, Motilva MJ (2002) Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies. J Agric Food Chem 50:5349–5354. https://doi.org/10.1021/jf020357h

    Article  PubMed  CAS  Google Scholar 

  52. Commission Implementing Regulation EU No 299/2013 (2013) Amending regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J Eur Union L266:9–13

    Google Scholar 

  53. Dias LG, Rodrigues N, Veloso ACA, Pereira JA, Peres AM (2016) Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. Eur Food Res Technol 242:259–270. https://doi.org/10.1007/s00217-015-2537-4

    Article  CAS  Google Scholar 

  54. Wu X, Miyake K, Tahara Y, Fujimoto H, Iwai K, Narita Y, Hanzawa T, Kobayashi T, Kakiuchi M, Ariki S, Fukunaga T, Ikezaki H, Toko K (2020) Quantification of bitterness of coffee in the presence of high-potency sweeteners using taste sensors. Sens Actuators B Chem 309:127784. https://doi.org/10.1016/j.snb.2020.127784

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020), CEB (UIDB/04469/2020) and REQUIMTE-LAQV (UIDB/50006/2020) units and to the Associate Laboratories for Green Chemistry-LAQV (UIDB/50006/2020) and SusTEC (LA/P/0007/2020), as well as to BioTecNorte operation (NORTE‐01‐0145‐FEDER‐000004) and to Project “GreenHealth—Digital strategies in biological assets to improve well-being and promote green health” (Norte-01–0145-FEDER-000042) funded by the European Regional Development Fund under the scope of Norte2020 ‐ Programa Operacional Regional do Norte. Ítala M.G. Marx acknowledges the Ph.D. grant (SFRH/BD/137283/2018) provided by FCT. Nuno Rodrigues thanks to National funding by FCT-Foundation for Science and Technology, P.I., through the institutional scientific employment program-contract.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SC, JAP, AMP. Methodology: SC, NR. Formal analysis and investigation: ÍMGM, RC, NR, ACAV, AMP. Writing—original draft preparation: ÍMGM, AMP. Writing—review and editing. ÍMGM, RC, NR, ACAV, SC, JAP, AMP. Funding acquisition: SC, JAP, AMP. Resources: SC, JAP, AMP. Supervision: SC, JAP, AMP.

Corresponding authors

Correspondence to Susana Casal or António M. Peres.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial conflict/competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marx, Í.M.G., Casal, S., Rodrigues, N. et al. Impact of incorporating olive leaves during the industrial extraction of cv. Arbequina oils on the physicochemical–sensory quality and health claim fulfillment. Eur Food Res Technol 248, 171–183 (2022). https://doi.org/10.1007/s00217-021-03870-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03870-3

Keywords

  • Olive leaves
  • Olive oil
  • Phenolic compounds
  • Health claim
  • Electronic tongue