Skip to main content
Log in

Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The impact of repeated freeze–thaw cycles (one, two, three, and four) on the quality of Russian sturgeon (Acipenser gueldenstaedtii) samples kept in the partial vacuum and total vacuum packaging was performed. Chemical, colour, textural, fluorescence and mid-infrared measurements were performed on samples. During the repeated freeze–thaw cycles, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS), yellowness, and ΔE* increased, while hardness and pH values decreased, regardless of the storage conditions. For example, the PV, hardness, and pH values passed from 37.93 to 125.68 meq O2/kg of fat, from 303.17 to 186.24 g.s, and from 6.07 to 6.05 for samples kept in a partial vacuum and subjected to 1 and 4 freeze–thaw cycle(s), respectively. These changes induced some modification at the molecular level since an increase in the percentage of β-turn (from 35.40% for fresh samples to 39.70% and 37.06% for samples subjected to four freeze–thaw cycles and kept in the partial vacuum and total vacuum, respectively) and a decrease in the level of α-helix (from 10.70% for fresh samples to 9.30% and 9.23% for samples subjected to four freeze–thaw cycles and kept in the partial vacuum and total vacuum, respectively), was observed. From the obtained results, it could be concluded that the repeated freeze–thaw process affected physico-chemical properties of sturgeon that impacted their structure at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell JD, Kronen M, Vunisea A et al (2009) Planning the use of fish for food security in the Pacific. Mar Policy 33:64–76. https://doi.org/10.1016/j.marpol.2008.04.002

    Article  Google Scholar 

  2. Teneva LT, Schemmel E, Kittinger JN (2018) State of the plate: Assessing present and future contribution of fisheries and aquaculture to Hawai‘i’s food security. Mar Policy 94:28–38. https://doi.org/10.1016/j.marpol.2018.04.025

    Article  Google Scholar 

  3. FAO (2018) The state of world fisheries and agriculture 2018 - meeting the sustainable development goals.

  4. García MR, Cabo ML, Herrera JR et al (2017) Smart sensor to predict retail fresh fish quality under ice storage. J Food Eng 197:87–97. https://doi.org/10.1016/j.jfoodeng.2016.11.006

    Article  CAS  Google Scholar 

  5. Vaccaro AM, Buffa G, Messina CM et al (2005) Fatty acid composition of a cultured sturgeon hybrid (Acipenser naccarii x A. baerii). Food Chem 93:627–631. https://doi.org/10.1016/j.foodchem.2004.09.042

    Article  CAS  Google Scholar 

  6. Kaya Y, Turan H, Erdem ME (2008) Fatty acid and amino acid composition of raw and hot smoked sturgeon (Huso huso, L. 1758). Int J Food Sci Nutr 59:635–642. https://doi.org/10.1080/09637480701585511

    Article  PubMed  CAS  Google Scholar 

  7. Williot P, Sabeau L, Gessner J et al (2001) Sturgeon farming in Western Europe: Recent developments and perspectives. Aquat Living Resour 14:367–374. https://doi.org/10.1016/S0990-7440(01)01136-6

    Article  Google Scholar 

  8. Shen L, Shi Y, Zou YC et al (2014) Sturgeon aquaculture in China: Status, challenge and proposals based on nation-wide surveys of 2010–2012. J Appl Ichthyol 30:1547–1551. https://doi.org/10.1111/jai.12618

    Article  Google Scholar 

  9. Lee J, Fong Q, Park JW (2016) Effect of pre-freezing treatments on the quality of Alaska pollock fillets subjected to freezing/thawing. Food Biosci 16:50–55. https://doi.org/10.1016/j.fbio.2016.09.003

    Article  CAS  Google Scholar 

  10. Mokrani D, Oumouna M, Cuesta A (2018) Fish farming conditions affect to European sea bass (Dicentrarchus labrax L.) quality and shelf life during storage in ice. Aquaculture 490:120–124. https://doi.org/10.1016/j.aquaculture.2018.02.032

    Article  CAS  Google Scholar 

  11. Ayala MD, López Albors O, Blanco A et al (2005) Structural and ultrastructural changes on muscle tissue of sea bass, Dicentrarchus labrax L., after cooking and freezing. Aquaculture 250:215–231. https://doi.org/10.1016/j.aquaculture.2005.04.057

    Article  Google Scholar 

  12. Rehbein H, Çakli Ş (2000) The lysosomal enzyme activities of fresh, cooled, frozen and smoked salmon fish species (Onchorhyncus keta and Salmo salar). Turkish J Vet Anim Sci 24:103–108

    Google Scholar 

  13. Kilinc B, Cakli S (2004) Chemical, microbiological and sensory changes in thawed frozen fillets of sardine (Sardina pilchardus) during marination. Food Chem 88:275–280. https://doi.org/10.1016/j.foodchem.2004.01.044

    Article  CAS  Google Scholar 

  14. Benjakul S, Bauer F (2001) Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles. Food Chem 72:207–217. https://doi.org/10.1016/S0308-8146(00)00222-3

    Article  CAS  Google Scholar 

  15. Baygar T, Alparslan Y (2015) Effects of multiple freezing (−18 ± 2 °C) and microwave thawing cycles on the quality changes of sea bass (Dicentrarchus labrax). J Food Sci Technol 52:3458–3465. https://doi.org/10.1007/s13197-014-1373-z

    Article  PubMed  Google Scholar 

  16. Dawson P, Al-Jeddawi W, Remington N (2018) Effect of freezing on the shelf life of salmon. Int J Food Sci 2018:1–12. https://doi.org/10.1155/2018/1686121

    Article  CAS  Google Scholar 

  17. Velioglu HM, Temiz HT, Boyaci IH (2015) Differentiation of fresh and frozen-thawed fish samples using raman spectroscopy coupled with chemometric analysis. Food Chem 172:283–290. https://doi.org/10.1016/j.foodchem.2014.09.073

    Article  PubMed  CAS  Google Scholar 

  18. Hassoun A, Karoui R (2016) Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chem 200:343–353. https://doi.org/10.1016/j.foodchem.2016.01.028

    Article  PubMed  CAS  Google Scholar 

  19. Boughattas F, Vilkova D, Kondratenko E, Karoui R (2020) Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chem 312:126000. https://doi.org/10.1016/j.foodchem.2019.126000

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Chen W, Tian H, Liu Y (2018) Detection of frozen-thawed cycles for frozen tilapia (Oreochromis) fillets using near infrared spectroscopy detection of frozen-thawed cycles for frozen tilapia ( Oreochromis ) fillets using near infrared spectroscopy. J Aquat Food Prod Technol 27:1–10. https://doi.org/10.1080/10498850.2018.1461156

    Article  CAS  Google Scholar 

  21. Zhu F, Zhang D, He Y, Liu F (2012) Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen – thawed fish fillets. Food Bioproc Technol. https://doi.org/10.1007/s11947-012-0825-6

    Article  Google Scholar 

  22. Frelka JC, Phinney DM, Yang X et al (2019) Assessment of chicken breast meat quality after freeze/thaw abuse using magnetic resonance imaging techniques. J Sci Food Agric 99:844–853. https://doi.org/10.1002/jsfa.9254

    Article  PubMed  CAS  Google Scholar 

  23. AOAC (2005) Official methods of analysis of AOAC inter national. Off Methods Ananlysis AOAC Int, pp 20877–22417

    Google Scholar 

  24. Wang S, Xiang W, Fan H et al (2017) Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar) stored at 0 and 4 °C by low-field nuclear magnetic resonance (LF NMR 1H). J Food Sci Technol 55:173–182. https://doi.org/10.1007/s13197-017-2880-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Eymard S (2003) Mise en évidence et suivi de l’oxydation des lipides au cours de la conservation et de la transformation du chinchard (Trachurus trachurus): choix des procédés. Rapport de Thèse. 28–38

  26. Guizani N, Rahman MS, Al-Ruzeiqi MH et al (2014) Effects of brine concentration on lipid oxidation and fatty acids profile of hot smoked tuna (Thunnus albacares) stored at refrigerated temperature. J Food Sci Technol 51:577–582. https://doi.org/10.1007/s13197-011-0528-4

    Article  PubMed  CAS  Google Scholar 

  27. Hassoun A, Karoui R (2015) Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control 54:240–249. https://doi.org/10.1016/j.foodcont.2015.01.042

    Article  CAS  Google Scholar 

  28. Prato E, Biandolino F (2012) Total lipid content and fatty acid composition of commercially important fish species from the mediterranean, Mar Grande sea. Food Chem 131:1233–1239. https://doi.org/10.1016/j.foodchem.2011.09.110

    Article  CAS  Google Scholar 

  29. Ünal Şengör GF, Alakavuk DÜ, Tosun ŞY, Ulusoy Ş (2010) The chemical and sensory quality of smoked sturgeon (Huso huso): a case study. J Aquat Food Prod Technol 19:310–317. https://doi.org/10.1080/10498850.2010.520422

    Article  CAS  Google Scholar 

  30. Hosseini SV, Abedian-Kenari A, Rezaei M et al (2010) Influence of the in vivo addition of alpha-tocopheryl acetate with three lipid sources on the lipid oxidation and fatty acid composition of Beluga sturgeon, Huso huso, during frozen storage. Food Chem 118:341–348. https://doi.org/10.1016/j.foodchem.2009.04.131

    Article  CAS  Google Scholar 

  31. Gharibzahedi SMT, Mohammadnabi S (2017) Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int J Biol Macromol 95:769–777. https://doi.org/10.1016/j.ijbiomac.2016.11.119

    Article  PubMed  CAS  Google Scholar 

  32. Badiani A, Anfossi P, Fiorentini L et al (1996) Nutritional composition of cultured sturgeon (Acipenser spp.). J Food Compos Anal 9:171–190. https://doi.org/10.1006/jfca.1996.0024

    Article  CAS  Google Scholar 

  33. Opoku-Nkoom W (2015) Safety and quality characteristics of freeze-defrost cycles in muscle foods. EC Nutr 1:140–144

    Google Scholar 

  34. Rostamzad H, Shabanpour B, Kashaninejad M, Shabani A (2011) Antioxidative activity of citric and ascorbic acids and their preventive effect on lipid oxidation in frozen persian sturgeon fillets. Lat Am Appl Res 41:135–140

    CAS  Google Scholar 

  35. Ali S, Zhang W, Rajput N et al (2015) Effect of multiple freeze-thaw cycles on the quality of chicken breast meat. Food Chem 173:808–814. https://doi.org/10.1016/j.foodchem.2014.09.095

    Article  PubMed  CAS  Google Scholar 

  36. Tenyang N, Tiencheu B, Womeni HM (2018) Effect of smoking and refrigeration on lipid oxidation of Clupea harengus: a fish commonly consumed in Cameroon. Food Sci Nutr 6:464–473. https://doi.org/10.1002/fsn3.575

    Article  PubMed  CAS  Google Scholar 

  37. Rahman MH, Hossain MM, Rahman SME et al (2015) Evaluation of physicochemical deterioration and lipid oxidation of beef muscle affected by freeze-thaw cycles. Korean J Food Sci Anim Resour 35:772–782. https://doi.org/10.5851/kosfa.2015.35.6.772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jiang Q, Nakazawa N, Hu Y et al (2019) Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles. Food Chem 293:178–186. https://doi.org/10.1016/j.foodchem.2019.04.091

    Article  PubMed  CAS  Google Scholar 

  39. Karoui R, Hassoun A, Ethuin P (2017) Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J Food Eng 202:89–98. https://doi.org/10.1016/j.jfoodeng.2017.01.018

    Article  Google Scholar 

  40. Cheng S, Wang X, Li R et al (2019) Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: with emphasis on water status and distribution by LF-NMR and MRI. Meat Sci 147:44–52. https://doi.org/10.1016/j.meatsci.2018.08.020

    Article  PubMed  CAS  Google Scholar 

  41. Tironi V, LeBail A, De Lamballerie M (2007) Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. J Food Sci 72:381–387. https://doi.org/10.1111/j.1750-3841.2007.00472.x

    Article  CAS  Google Scholar 

  42. Li T, Li J, Hu W, Li X (2013) Quality enhancement in refrigerated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chem 138:821–826. https://doi.org/10.1016/j.foodchem.2012.11.092

    Article  PubMed  CAS  Google Scholar 

  43. Mousakhani-Ganjeh A, Hamdami N, Soltanizadeh N (2016) Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares). Innov Food Sci Emerg Technol 36:42–47. https://doi.org/10.1016/j.ifset.2016.05.017

    Article  CAS  Google Scholar 

  44. Fernández-Segovia I, Fuentes A, Aliño M et al (2012) Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. J Food Eng 113:210–216. https://doi.org/10.1016/j.jfoodeng.2012.06.003

    Article  Google Scholar 

  45. Cai L, Wu X, Li X et al (2014) Effects of different freezing treatments on physicochemical responses and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) fillets during refrigerated storage. LWT - Food Sci Technol 59:122–129. https://doi.org/10.1016/j.lwt.2014.04.062

    Article  CAS  Google Scholar 

  46. Karoui R, Lefur B, Grondin C et al (2007) Mid-infrared spectroscopy as a new tool for the evaluation of fish freshness. Int J Food Sci Technol 42:57–64. https://doi.org/10.1111/j.1365-2621.2006.01208.x

    Article  CAS  Google Scholar 

  47. Paradkar MM, Sivakesava S, Irudayaraj J (2003) Discrimination and classification of adulterants in maple syrup with the use of infrared spectroscopic techniques. J Sci Food Agric 83:714–721. https://doi.org/10.1002/jsfa.1332

    Article  CAS  Google Scholar 

  48. Pinilla CMB, Brandelli A, López-Caballero ME et al (2020) Structural features of myofibrillar fish protein interacting with phosphatidylcholine liposomes. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109687

    Article  PubMed  Google Scholar 

  49. Wang Z, He Z, Zhang D et al (2021) Effect of multiple freeze-thaw cycles on protein and lipid oxidation in rabbit meat. Int J Food Sci Technol 56:3004–3015. https://doi.org/10.1111/ijfs.14943

    Article  CAS  Google Scholar 

  50. Iconomidou VA, Chryssikos DG, Gionis V et al (2000) Secondary structure of chorion proteins of the teleostean fish Dentex dentex by ATR FT-IR and FT-Raman spectroscopy. J Struct Biol 132:112–122. https://doi.org/10.1006/jsbi.2000.4307

    Article  PubMed  CAS  Google Scholar 

  51. Zhao J, Dong F, Li Y et al (2015) Effect of freeze-thaw cycles on the emulsion activity and structural characteristics of soy protein isolate. Process Biochem 50:1607–1613. https://doi.org/10.1016/j.procbio.2015.06.021

    Article  CAS  Google Scholar 

  52. Sun W, Zhou F, Sun DW, Zhao M (2013) Effect of oxidation on the emulsifying properties of myofibrillar proteins. Food Bioproc Technol 6:1703–1712. https://doi.org/10.1007/s11947-012-0823-8

    Article  CAS  Google Scholar 

  53. Elmasry G, Nagai H, Moria K et al (2015) Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation-emission matrix. Talanta 143:145–156. https://doi.org/10.1016/j.talanta.2015.05.031

    Article  PubMed  CAS  Google Scholar 

  54. Karoui R, Thomas E, Dufour E (2006) Utilisation of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen-thawed fish fillets. Food Res Int 39:349–355. https://doi.org/10.1016/j.foodres.2005.08.007

    Article  CAS  Google Scholar 

  55. Karoui R, Dufour É, De Baerdemaeker J (2006) Common components and specific weights analysis: a tool for monitoring the molecular structure of semi-hard cheese throughout ripening. Anal Chim Acta 572:125–133. https://doi.org/10.1016/j.aca.2006.04.089

    Article  PubMed  CAS  Google Scholar 

  56. Durek J, Bolling JS, Knorr D et al (2012) Effects of different storage conditions on quality related porphyrin fluorescence signatures of pork slices. Meat Sci 90:252–258. https://doi.org/10.1016/j.meatsci.2011.07.010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out in the framework of ALIBIOTECH project, which is financed by the European Union, the French State and the French Region of Hauts-de-France. Mrs. D. Vilkova is grateful to Vernadsky program and Scholarship of the President of the Russian Federation (Ministry of Science and Higher Education of the Russian Federation) for their financial support of her Ph.D. during her stay at Artois University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romdhane Karoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilkova, D., Kondratenko, E., Chèné, C. et al. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur Food Res Technol 248, 95–107 (2022). https://doi.org/10.1007/s00217-021-03859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03859-y

Keywords

Navigation