Skip to main content

Advertisement

Log in

Effects of age on mineral elements, amino acids and fatty acids in Chinese chestnut fruits

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Castanea mollissima BL (chestnut) is a kind of food with a unique flavor and high nutrition, which people pursue worldwide. As China is the birthplace of chestnut, there are many older chestnut trees all over the country. However, the nutritional value of the fruits of these old chestnut trees is not clear now. This study first assessed the nutritional value of old chestnut fruits (10 years, 100 years, 300 years, 500 years, 700 years and 900 years) in an old chestnut garden in Huairou, Beijing, highlighting the calcium, iron, zinc, selenium, amino acids and fatty acids. The age of all chestnut trees sampled was certified by Forestry Bureau of Beijing. These findings have revealed significant differences in the nutrient components of chestnuts with different years. The 10-year and 700-year groups have higher Zn, Se, and amino acid levels. Besides, the 700-year group has relative higher level of Ca and Fe and lower ratio of saturated fatty acid/unsaturated fatty acid. We also demonstrated that 700-year-old chestnuts have the highest nutrient value. This study provided a basis for establishing product quality standards for old chestnut trees and laid the foundation for further developing and protecting old chestnut in Beijing and even in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang F, Liu Q, Pan S, Xu C, Xiong YL (2015) Chemical composition and quality traits of Chinese chestnuts (Castanea mollissima) produced in different ecological regions. Food Biosci 11:33–42. https://doi.org/10.1016/j.fbio.2015.04.004

    Article  CAS  Google Scholar 

  2. Zhang M, Chen H, Zhang Y (2011) Physicochemical, thermal, and pasting properties of Chinese chestnut (Castanea mollissima Bl.) starches as affected by different drying methods. Starch 63:260–267. https://doi.org/10.1002/star.201000146

    Article  CAS  Google Scholar 

  3. De Vasconcelos MC, Bennett RN, Rosa EA, Ferreira-Cardoso JV (2010) Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. J Sci Food Agric 90:1578–1589. https://doi.org/10.1002/jsfa.4016

    Article  CAS  PubMed  Google Scholar 

  4. Yang B, Jiang G, Gu C, Yang H, Jiang Y (2010) Structural changes in polysaccharides isolated from chestnut (Castanea mollissima Bl.) fruit at different degrees of hardening. Food Chem 119:1211–1215. https://doi.org/10.1016/j.foodchem.2009.08.050

    Article  CAS  Google Scholar 

  5. FAO. Food and agriculture data. http://www.fao.org/faostat/zh/#data/QC. Accessed 10 Jan 2021

  6. Chen J, Waang H, Zhang C, Li H, Li Q, Ma X, Yang F (2013) Nutrient components and processing adaptability of Chinese chestnut. Mod Food Sci Technol 4:725–728

    Google Scholar 

  7. Desmaison AM, Marcher MH, Tixier M (1984) Changes in the free and total amino acid composition of ripening chestnut seeds. Phytochemistry 23:2453–2456

    Article  CAS  Google Scholar 

  8. Nomura K, Nakamura S, Fujitake M, Nakanishi T (2000) Complete amino acid sequence of Japanese chestnut agglutinin. Biochem Biophys Res Commun 276:23–28

    Article  CAS  Google Scholar 

  9. Xie F, Zha J, Tang H, Xu Y, Liu X, Wan Z (2018) Combining ability and heterosis analysis for mineral elements by using cytoplasmic male-sterile systems in non-heading Chinese cabbage (Brassica rapa). Crop Pasture Sci 69:296–302. https://doi.org/10.1071/CP17357

    Article  CAS  Google Scholar 

  10. Dragicevic V, Oljaca S, Stojiljkovic M, Simic M, Dolijanovic Z, Kravic N (2015) Effect of the maize-soybean intercropping system on the potential bioavailability of magnesium, iron and zinc. Crop Pasture Sci 66:1118–1127. https://doi.org/10.1071/CP14211

    Article  CAS  Google Scholar 

  11. Tomasi N, Pinton R, Gottardi S, Mimmo T, Scampicchio M, Cesco S (2015) Selenium fortification of hydroponically grown corn salad (Valerianella locusta). Crop Pasture Sci 66:1128–1136. https://doi.org/10.1071/CP14218

    Article  CAS  Google Scholar 

  12. Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B (2019) Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J Environ Manag 241:319–327. https://doi.org/10.1016/j.jenvman.2019.04.041

    Article  CAS  Google Scholar 

  13. Rui Y, Kong X, Qin J (2007) Application of ICP-MS to detection of heavy metals in soil from different cropping systems. Spectrosc Spect Anal 27:1201–1203

    CAS  Google Scholar 

  14. Rui Y, Qu L, Kong X (2008) Effects of soil use along Yellow River basin on the pollution of soil by heavy metals. Spectrosc Spect Anal 28:934–936

    CAS  Google Scholar 

  15. Shi R, Zou C, Rui Y, Zhang X, Xia X, Zhang F (2009) Application of ICP-AES to detecting nutrients in grain of wheat core collection of China. Spectrosc Spect Anal 29:1104–1107. https://doi.org/10.3964/j.issn.1000-0593(2009)04-1104-04

    Article  CAS  Google Scholar 

  16. Rui M, Ma C, White JC, Hao Y, Wang Y, Tang X, Yang J, Jiang F, Ali A, Rui Y et al (2018) Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environ Sci Nano 5:2088–2102. https://doi.org/10.1039/C8EN00436F

    Article  CAS  Google Scholar 

  17. Anjum FM, Ahmad I, Butt MS, Sheikh MA, Pasha I (2005) Amino acid composition of spring wheats and losses of lysine during chapati baking. J Food Compos Anal 18:523–532

    Article  CAS  Google Scholar 

  18. Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, Xiang Z, Hao Y, Rui YK, Cao W (2017) Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng 5:7b–736b

    Article  Google Scholar 

  19. Uncu AT, Uncu AO, Frary A, Doganlar S (2017) Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem 221:1026–1033

    Article  CAS  Google Scholar 

  20. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Bio 4:517–529. https://doi.org/10.1038/nrm1155

    Article  CAS  Google Scholar 

  21. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337:670–676. https://doi.org/10.1056/NEJM199709043371003

    Article  CAS  PubMed  Google Scholar 

  22. Grantham-McGregor S, Ani C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131:666S–668S

    Article  Google Scholar 

  23. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  CAS  Google Scholar 

  24. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  25. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  Google Scholar 

  26. Lim U, Subar AF, Mouw T, Hartge P, Morton LM, Stolzenberg SR, Campbell D, Hollenbeck AR, Schatzkin A (2006) Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies. Cancer Epidemiol Biomark Prev 9:1654–1659

    Article  Google Scholar 

  27. Hajeb SJ (2010) Glutamate. Its applications in food and contribution to health. Appetite 55:1–10

    Article  Google Scholar 

  28. Michalak A, Rose C, Butterworth J, Butterworth RF (1996) Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology 24:908–913

    Article  CAS  Google Scholar 

  29. Lu C, Guo S (2016) Analysis and comprehensive evaluation of main nutritive quality of 16 chestnut germplasm resources. Sci Technol Food Ind 23:357–361

    Google Scholar 

  30. Toprak S (2019) The macro and micro nutrition status of sweet chestnut (Castanea sativa Mill.) in Inegol (Bursa-Turkey). Euras J For Sci. https://doi.org/10.31195/ejejfs.535803

    Article  Google Scholar 

  31. Mcclean S, Beggs LB, Welch RW (2014) Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues. Food Chem 146:443–447

    Article  CAS  Google Scholar 

  32. Liang L, Li R, Wang G, Zhang B (2013) Fat content and fatty acid composition of Chinese chestnut (Castanea mollissima Blume) Kernels. Food Sci 10:153–158

    Google Scholar 

  33. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M (2017) Palmitic and oleic acid: the Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrin Met 29:178–190

    Article  Google Scholar 

  34. Baró L, Fonollá J, Pe AJL, Martínez-Férez A, Lucena A, Jiménez J, Boza JJ, López-Huertas E (2003) n-3 fatty acids plus oleic acid and vitamin supplemented milk consumption reduces total and LDL cholesterol, homocysteine and levels of endothelial adhesion molecules in healthy humans. Clin Nutr 22:175–182

    Article  Google Scholar 

  35. Lopez-Huertas E (2009) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. Pharmacol Res 61:200–207

    Article  Google Scholar 

  36. Rui Y, Wang W, Chen L (2010) Analysis of the composition and concentration of fatty acids in transgenic soybean (cp4-epsps1) oil. J Verbr Lebensm 5:7–10

    Article  CAS  Google Scholar 

  37. Thang NT, Van Do T, Sato T, Binh NT, Kozan O, Van Cam N (2016) Yield and nutrient content of chestnut (Castanopsis piriformis) in natural central highlands forests, Vietnam. Small Scale 15:1–11

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by National Key R&D Program of China (2017YFD0801300, 2017YFD0801103), the NSFC-Guangdong Joint Fund (U1401234), the National Natural Science Foundation of China (No. 41371471, No. 31501791) and the Key National Natural Science Foundation of China (No. 41130526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukui Rui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethics requirements

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of any agency.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zhang, P., Guo, M. et al. Effects of age on mineral elements, amino acids and fatty acids in Chinese chestnut fruits. Eur Food Res Technol 247, 2079–2086 (2021). https://doi.org/10.1007/s00217-021-03773-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03773-3

Keywords

Navigation