Skip to main content
Log in

Multi-residue analytical methods for pesticides in teas: a review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Tea is one of the most popular drinks worldwide. In the process of tea planting, for controlling pests, a variety of pesticides are usually applied. Therefore, pesticide residues and their metabolites in tea leaves, as well as their adverse effects on tea drinkers' health, are becoming increasingly concerning. The tea-leaf matrix is very complex because it is rich in organic acids, polyphenols, natural pigments, catechins, flavonols, metallic/non-metallic elements, and other unconfirmed substances. Hence, it is a great challenge to conduct multi-residue analysis of pesticides in tea samples. Researchers worldwide have been devoted to the development of multi-residue analytical methods for pesticide detection in tea and have made great progress in recent years. In this review, the recent advances in the multi-residue analysis of pesticides in tea matrices, especially those regarding matrix effects and their elimination, sample preparation and detection techniques, were reviewed in depth, and future research directions were suggested as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen D, Chen G, Sun Y, Zeng X, Ye H (2020) Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: a review. Food Res Int. 137:109584. https://doi.org/10.1016/j.foodres.2020.109584

    Article  CAS  PubMed  Google Scholar 

  2. Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea-a review. J Am Coll Nutr 25(2):79–99. https://doi.org/10.1080/07315724.2006.10719518

    Article  CAS  PubMed  Google Scholar 

  3. Nibir YM, Sumit AF, Akhand AA, Ahsan N, Hossain MS (2017) Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac J Trop Bio 7(4):352–357. https://doi.org/10.1016/j.apjtb.2017.01.005

    Article  Google Scholar 

  4. http://www.fao.org/3/BU642en/bu642en.pdf. Retrieved 25 Feb 2021

  5. Hou X, Lei S, Qiu S, Guo L, Yi S, Liu W (2014) A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent. Food Chem 153:121–129. https://doi.org/10.1016/j.foodchem.2013.12.031

    Article  CAS  PubMed  Google Scholar 

  6. Kumari D, John S (2019) Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere 224:162–167. https://doi.org/10.1016/j.chemosphere.2019.02.091

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Li J, Zhai S, Deng J, Wang T, Zhai Y, Wang X (2018) The status of Chinese standards for pesticide residue in tea. China Stand 11:98–104. https://doi.org/10.3969/j.issn.1002-5944.2018.06.012

    Article  Google Scholar 

  8. Gao W, Yan M, Xiao Y, Lv Y, Peng C, Wan X, Hou R (2019) Rinsing tea before brewing decreases pesticide residues in tea infusion. J Agr Food Chem 67:5384–5393. https://doi.org/10.1021/acs.jafc.8b04908

    Article  CAS  Google Scholar 

  9. Wang J, Cheung W, Leung D (2014) Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea. J Agr Food Chem 62(4):966–983. https://doi.org/10.1021/jf404123h

    Article  CAS  Google Scholar 

  10. Pang G, Fan C, Chang Q, Yang F, Cao Y (2018) Analysis of pesticide in tea:Chromatography-Mass Spectrometry Methodology. Chemical Industry Press (Imprint: Elsevier)

  11. Li X, Zhang Z, Li P, Zhang Q, Zhang W, Ding X (2013) Determination for major chemical contaminants in tea (Camellia sinensis) matrices: a review. Food Res Int 53(2):649–658. https://doi.org/10.1016/j.foodres.2012.12.048

    Article  CAS  Google Scholar 

  12. Samsidar A, Siddiquee S, Shaarani SM (2018) A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Tech 71:188–201. https://doi.org/10.1016/j.tifs.2017.11.011

    Article  CAS  Google Scholar 

  13. Yu X, Sun D, He Y (2020) Emerging techniques for determining the quality and safety of tea products: a review. Compr Rev Food Sci F 19:2613–2638. https://doi.org/10.1111/1541-4337.12611

    Article  Google Scholar 

  14. Rahman MM, Abd El-Aty AM, Choi J, Kim S, Shin SC, Shim J (2015) Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chem 168:445–453. https://doi.org/10.1016/j.foodchem.2014.07.095

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wang Z, Gao F, Song D, Lu X (2018) Selection of representative matrices for the multiresidue analysis of pesticides in tea by GC-MS/MS. Anal Methods UK 10(8):855–866. https://doi.org/10.1039/C7AY02773G

    Article  CAS  Google Scholar 

  16. Rahman MM, Abd El-Aty AM, Shim J (2013) Matrix enhancement effect: a blessing or a curse for gas chromatography?—a review. Anal Chim Acta 801:14–21. https://doi.org/10.1016/j.aca.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  17. Rutkowska E, Łozowicka B, Kaczyński P (2020) Compensation of matrix effects in seed matrices followed by gas chromatography-tandem mass spectrometry analysis of pesticide residues. J Chromatogr A 1614:460738. https://doi.org/10.1016/j.chroma.2019.460738

    Article  CAS  PubMed  Google Scholar 

  18. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431. https://doi.org/10.1093/jaoac/86.2.412

    Article  CAS  PubMed  Google Scholar 

  19. Xiang P, Shen M, Zhuo X (2009) Matrix effects in liquid chromatography-mass spectrometric analysis. Fenxi Ceshi Xuebao 28(6):753–756. https://doi.org/10.3969/j.issn.1004-4957.2009.06.026

    Article  CAS  Google Scholar 

  20. Li Y, Chen X, Fan C, Pang G (2012) Compensation for matrix effects in the gas chromatography–mass spectrometry analysis of 186 pesticides in tea matrices using analyte protectants. J Chromatogr A 1266:131–142. https://doi.org/10.1016/j.chroma.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  21. European Commission (2019) Document SANTE/12682/2019, analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Available from http://www.eurl-pesticides.eu. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf

  22. Uclés S, Lozano A, Sosa A, Parrilla Vázquez P, Valverde A, Fernández-Alba AR (2017) Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 174:72–81. https://doi.org/10.1016/j.talanta.2017.05.068

    Article  CAS  PubMed  Google Scholar 

  23. Maštovská K, Lehotay SJ, Anastassiades M (2005) Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal Chem 77(24):8129–8137. https://doi.org/10.1021/ac0515576

    Article  CAS  PubMed  Google Scholar 

  24. Cui X, Zhong Q, Zhang X, Li H, Wang X, Luo F, Chen Y, Chen Z (2019) Progress on analysis of chiral pesticide enantiomers residues in agricultural products based on chromatographic method. Fenxi Ceshi Xuebao 38(2):249–262

    Google Scholar 

  25. Carrão DB, Perovani IS, de Albuquerque NCP, de Oliveira ARM (2020) Enantioseparation of pesticides: a critical review. TrAC Trend Anal Chem 122:115719. https://doi.org/10.1016/j.trac.2019.115719

    Article  CAS  Google Scholar 

  26. Zhao P, Wang Z, Li K, Guo X, Zhao L (2018) Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 1568:8–21. https://doi.org/10.1016/j.chroma.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  27. Lin K, Liu W, Li L, Gan J (2008) Single and joint acute toxicity of isocarbophos enantiomers to daphnia magna. J Agr Food Chem 56(11):4273–4277. https://doi.org/10.1021/jf073535l

    Article  CAS  Google Scholar 

  28. Zhang X, Zhao Y, Cui X, Wang X, Shen H, Chen Z, Huang C, Meruva N, Zhou L, Wang F, Wu L, Luo F (2018) Application and enantiomeric residue determination of diniconazole in tea and grape and apple by supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Chromatogr A 1581–1582:144–155. https://doi.org/10.1016/j.chroma.2018.10.051

    Article  CAS  PubMed  Google Scholar 

  29. Jimenez-Jimenez S, Casado N, Garcia MA, Marina ML (2019) Enantiomeric analysis of pyrethroids and organophosphorus insecticides. J Chromatogr A 1605:360345. https://doi.org/10.1016/j.chroma.2019.06.066

    Article  CAS  PubMed  Google Scholar 

  30. Zhao P, Wang Z, Gao X, Guo X, Zhao L (2019) Simultaneous enantioselective determination of 22 chiral pesticides in fruits and vegetables using chiral liquid chromatography coupled with tandem mass spectrometry. Food Chem 277:298–306. https://doi.org/10.1016/j.foodchem.2018.10.128

    Article  CAS  PubMed  Google Scholar 

  31. Fanali C (2019) Enantiomers separation by capillary electrochromatography. TrAC Trend Anal Chem 120:115640. https://doi.org/10.1016/j.trac.2019.115640

    Article  CAS  Google Scholar 

  32. Petrie B, Camacho Muñoz MD, Martín J (2019) Stereoselective LC–MS/MS methodologies for environmental analysis of chiral pesticides. TrAC Trend Anal Chem 110:249–258. https://doi.org/10.1016/j.trac.2018.11.010

    Article  CAS  Google Scholar 

  33. Zhang X, Luo F, Lou Z, Lu M, Chen Z (2014) Simultaneous and enantioselective determination of cis-epoxiconazole and indoxacarb residues in various teas, tea infusion and soil samples by chiral high performance liquid chromatography coupled with tandem quadrupole-time-of-flight mass spectrometry. J Chromatogr A 1359:212–223. https://doi.org/10.1016/j.chroma.2014.07.058

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Luo F, Chen Z, Lv M (2012) Enantioseparation and quantification of chiral pesticide indoxacarb residues in tea by UHPLC-Q-TOF/MS. J Chin Mass Spectrom Soc 33(6):321–326

    Google Scholar 

  35. Zhang X, Wang X, Luo F, Sheng H, Zhou L, Zhong Q, Lou Z, Sun H, Yang M, Cui X, Chen Z (2019) Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry. Ecotox Environ Safe 172:530–537. https://doi.org/10.1016/j.ecoenv.2019.01.103

    Article  CAS  Google Scholar 

  36. Chen L, Song F, Liu Z, Zheng Z, Xing J, Liu S (2014) Study of the ESI and APCI interfaces for the UPLC-MS/MS analysis of pesticides in traditional Chinese herbal medicine. Anal Bioanal Chem 406(5):1481–1491. https://doi.org/10.1007/s00216-013-7508-7

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H (2019) Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem 293:271–277. https://doi.org/10.1016/j.foodchem.2019.04.085

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Shi T, Luo X, Xiong H, Min F, Chen Y, Nie S, Xie M (2019) Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem 275:255–264. https://doi.org/10.1016/j.foodchem.2018.09.094

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Teng X, Wang W, Zhang Z, Fan C (2019) Determination of multiple pesticide residues in teas by gas chromatography with accurate time-of-flight mass spectrometry. J Sep Sci 42(11):1955–2088. https://doi.org/10.1002/jssc.201800975

    Article  CAS  Google Scholar 

  40. Sajid M, Alhooshani K (2020) Ultrasound-assisted solvent extraction of organochlorine pesticides from porous membrane packed tea samples followed by GC–MS analysis. Microchem J 152:104464. https://doi.org/10.1016/j.microc.2019.104464

    Article  CAS  Google Scholar 

  41. Ahmad R, Ahmad N, Al-Anaki WS, Ismail FA, Al-Jishi F (2020) Solvent and temperature effect of accelerated solvent extraction (ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in commercial tea and coffee. Food Chem 311:126021. https://doi.org/10.1016/j.foodchem.2019.126021

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Yin P, Wang Q, Jiang Y, Liu X (2014) A modified QuEChERS sample preparation method for the analysis of 70 pesticide residues in tea using gas chromatography-tandem mass spectrometry. Food Anal Method 7(8):1577–1587. https://doi.org/10.1007/s12161-014-9791-0

    Article  Google Scholar 

  43. Chen H, Gao G, Liu P, Pan M, Chai Y, Liu X, Lu C (2018) Development and validation of an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry for the determination of fipronil and its metabolites in tea and chrysanthemum. Food Chem 246:328–334. https://doi.org/10.1016/j.foodchem.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, El-Aty AMA, Lee Y, Hong SM, Seo YM, Shim J (2014) A simple HPLC-UVD method for detection of etofenprox in green tea using sample hydration. Food Sci Biotech 23(6):2097–2101. https://doi.org/10.1007/s10068-014-0285-z

    Article  CAS  Google Scholar 

  45. Li B, Zeng F, Dong Q, Cao Y, Fan H, Deng C (2012) Rapid Determination method for 12 pyrethroid pesticide residues in tea by stir bar sorptive extraction-thermal desorption-gas chromatography. Phys Procedia 25:1776–1780. https://doi.org/10.1016/j.phpro.2012.03.310

    Article  CAS  Google Scholar 

  46. Pang G, Fan C, Cao Y, Yan F, Li Y, Kang J, Chen H, Chang Q (2015) High throughput analytical techniques for the determination and confirmation of residues of 653 multiclass pesticides and chemical pollutants in tea by GC/MS, GC/MS/MS, and LC/MS/MS: collaborative study, first action 2014.09. J AOAC Int 98(5):1428–1454. https://doi.org/10.5740/jaoacint.15021

    Article  CAS  PubMed  Google Scholar 

  47. Shoeibi S, Amirahmadi M, Rastegar H, Khosrokhavar R, Khaneghah AM (2013) An applicable strategy for improvement recovery in simultaneous analysis of 20 pesticides residue in tea. J Food Sci 78(5):T792–T796. https://doi.org/10.1111/1750-3841.12100

    Article  CAS  PubMed  Google Scholar 

  48. Liu C, Ji Y, Jiang X, Yuan X, Zhang X, Zhao L (2019) The determination of pesticides in tea samples followed by magnetic multiwalled carbon nanotube-based magnetic solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. New J Chem 43(14):5395–5543. https://doi.org/10.1039/C8NJ06536E

    Article  CAS  Google Scholar 

  49. Moret S, Conchione C, Srbinovska A, Lucci P (2019) Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods 8(10):503. https://doi.org/10.3390/foods8100503

    Article  CAS  PubMed Central  Google Scholar 

  50. Emilie D, Michel T, Elfakir C (2013) Chapter 4 microwave-assisted extraction in natural product extraction: principles and applications. The Royal Society of Chemistry

  51. Wu L, Hu M, Li Z, Song Y, Zhang H, Yu A, Ma Q, Wang Z (2015) Dynamic microwave-assisted extraction online coupled with single drop microextraction of organophosphorus pesticides in tea samples. J Chromatogr A 1407:42–51. https://doi.org/10.1016/j.chroma.2015.06.062

    Article  CAS  PubMed  Google Scholar 

  52. Kadir HA, Abas F, Mediani A, Ismail IS, Lajis NH (2017) Comparison of ASE with in-cell cleanup and the QuEChERS sample preparation methods for the analysis of pesticide residues in tea. Int Food Res J 24(1):261

    Google Scholar 

  53. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A 1217(16):2342–2357. https://doi.org/10.1016/j.chroma.2009.11.088

    Article  CAS  PubMed  Google Scholar 

  54. Hou X, Zheng X, Zhang C, Ma X, Ling Q, Zhao L (2014) Ultrasound-assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. J Chromatogr B 969:123–127. https://doi.org/10.1016/j.jchromb.2014.08.010

    Article  CAS  Google Scholar 

  55. Liu W, Quan J (2020) A novel ionic liquid of [BeMIM] [Tf2N] for extracting pesticides residues in tea sample by dispersive liquid–liquid microextraction. Chromatographia 83(1):41–51. https://doi.org/10.1007/s10337-019-03819-5

    Article  CAS  Google Scholar 

  56. Farajzadeh MA, Abbaspour M, Kazemian R, Afshar Mogaddam MR (2020) Preparation of a new three-component deep eutectic solvent and its use as an extraction solvent in dispersive liquid–liquid microextraction of pesticides in green tea and herbal distillates. J Sci Food Agr 100(5):1904–1912. https://doi.org/10.1002/jsfa.10200

    Article  CAS  Google Scholar 

  57. Liu X, Chen M, Meng Z, Qian H, Zhang S, Lu R, Gao H, Zhou W (2020) Extraction of benzoylurea pesticides from tea and fruit juices using deep eutectic solvents. J Chromatogr B 1140:121995. https://doi.org/10.1016/j.jchromb.2020.121995

    Article  CAS  Google Scholar 

  58. Maugeri Z, Domínguez De María P (2012) Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2(2):421–425. https://doi.org/10.1039/c1ra00630d

    Article  CAS  Google Scholar 

  59. Li J, Shan J, Kong Z, Fan C, Zhang Z, Fan B (2020) Determining multi-pesticide residues in teas by dispersive solid-phase extraction combined with speed-regulated directly suspended droplet microextraction followed by gas chromatography–tandem mass spectrometry. J Sep Sci 43(2):486–495. https://doi.org/10.1002/jssc.201900484

    Article  CAS  PubMed  Google Scholar 

  60. Hou X, Lei S, Guo L, Qiu S (2016) Optimization of a multi-residue method for 101 pesticides in green tea leaves using gas chromatography - tandem mass spectrometry. Rev Bras 26(4):401–407. https://doi.org/10.1016/j.bjp.2016.03.007

    Article  CAS  Google Scholar 

  61. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trend Anal Chem 80:641–654. https://doi.org/10.1016/j.trac.2015.08.015

    Article  CAS  Google Scholar 

  62. Gao L, Liu L, Sun Y, Zhao W, He L (2020) Fabrication of a novel azamacrocycle-based adsorbent for solid-phase extraction of organophosphorus pesticides in tea drinks. Microchem J 153:104364. https://doi.org/10.1016/j.microc.2019.104364

    Article  CAS  Google Scholar 

  63. Ueda Y, Honda K (2017) Development of rapid cleanup method using new cleanup agents for analysis of pesticide residues in tea. Shokuhin Eiseigaku Zasshi 58(4):188–194. https://doi.org/10.3358/shokueishi.58.188

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852. https://doi.org/10.1021/ac00062a008

    Article  CAS  Google Scholar 

  65. Piri-Moghadam H, Ahmadi F, Pawliszyn J (2016) A critical review of solid phase microextraction for analysis of water samples. TrAC Trend Anal Chem 85:133–143. https://doi.org/10.1016/j.trac.2016.05.029

    Article  CAS  Google Scholar 

  66. Llompart M, Celeiro M, García-Jares C, Dagnac T (2019) Environmental applications of solid-phase microextraction. TrAC Trend Anal Chem 112:1–12. https://doi.org/10.1016/j.trac.2018.12.020

    Article  CAS  Google Scholar 

  67. Li J, Zhang Z, Sun M, Zhang B, Fan C (2018) Use of a headspace solid-phase microextraction-based methodology followed by gas chromatography–tandem mass spectrometry for pesticide multiresidue determination in teas. Chromatographia 81(5):809–821. https://doi.org/10.1007/s10337-018-3499-z

    Article  CAS  Google Scholar 

  68. Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM (2009) A review of stir bar sorptive extraction. Chromatographia S1:79–94. https://doi.org/10.1365/s10337-008-0687-2

    Article  Google Scholar 

  69. Ochiai N, Sasamoto K, David F, Sandra P (2018) Recent developments of stir bar sorptive extraction for food applications: extension to polar solutes. J Agr Food Chem 66(28):7249–7255. https://doi.org/10.1021/acs.jafc.8b02182

    Article  CAS  Google Scholar 

  70. Barker SA, Long AR, Short CR (1989) Isolation of drug residues from tissues by solid phase dispersion. J Chromatogr A 475:353–361. https://doi.org/10.1016/S0021-9673(01)89689-8

    Article  CAS  Google Scholar 

  71. Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Laganà A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217(16):2521–2532. https://doi.org/10.1016/j.chroma.2010.01.030

    Article  CAS  PubMed  Google Scholar 

  72. Cao Y, Tang H, Chen D, Li L (2015) A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC–MS/MS. J Chromatogr B 998–999:72–79. https://doi.org/10.1016/j.jchromb.2015.06.013

    Article  CAS  Google Scholar 

  73. Hou R, Jiao W, Xiao Y, Guo J, Lv Y, Tan H, Hu J, Wan X (2015) Novel use of PVPP in a modified QuEChERS extraction method for UPLC-MS/MS analysis of neonicotinoid insecticides in tea matrices. Anal Methods UK 7(13):5521–5529. https://doi.org/10.1039/c5ay00957j

    Article  CAS  Google Scholar 

  74. Jiao W, Xiao Y, Qian X, Tong M, Hu Y, Hou R, Hua R (2016) Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra performance liquid chromatography–electrospray tandem mass spectrometry. Food Chem 210:26–34. https://doi.org/10.1016/j.foodchem.2016.04.097

    Article  CAS  PubMed  Google Scholar 

  75. Zhang M, Ma G, Zhang L, Chen H, Zhu L, Wang C, Liu X (2019) Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst 144(17):5164–5171. https://doi.org/10.1039/C9AN00927B

    Article  CAS  PubMed  Google Scholar 

  76. Chen H, Gao G, Chai Y, Ma G, Hao Z, Wang C, Liu X, Lu C (2017) Multiresidue method for the rapid determination of pesticide residues in tea using ultra performance liquid chromatography orbitrap high resolution mass spectrometry and in-syringe dispersive solid phase extraction. ACS Omega 2(9):5917–5927. https://doi.org/10.1021/acsomega.7b00863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu S, Zhao M, Mao Q, Fang C, Chen D, Yan P (2019) Rapid one-step cleanup method to minimize matrix effects for residue analysis of alkaline pesticides in tea using liquid chromatography–high resolution mass spectrometry. Food Chem 299:125146. https://doi.org/10.1016/j.foodchem.2019.125146

    Article  CAS  PubMed  Google Scholar 

  78. Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–112

    Article  CAS  Google Scholar 

  79. Deng X, Guo Q, Chen X, Xue T, Wang H, Yao P (2014) Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography–mass spectrometry. Food Chem 145:853–858. https://doi.org/10.1016/j.foodchem.2013.08.137

    Article  CAS  PubMed  Google Scholar 

  80. Musarurwa H, Chimuka L, Pakade VE, Tavengwa NT (2019) Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J Food Compos Anal 84:103314. https://doi.org/10.1016/j.jfca.2019.103314

    Article  CAS  Google Scholar 

  81. Burak P, Osman T (2020) Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. J Environ Sci Health, Part B 55(1):1–10. https://doi.org/10.1080/03601234.2019.1660563

    Article  CAS  Google Scholar 

  82. Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Camara JS (2019) QuEChERS—fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 1070:1–28. https://doi.org/10.1016/j.aca.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  83. Suganthi A, Bhuvaneswari K, Ramya M (2018) Determination of neonicotinoid insecticide residues in sugarcane juice using LC-MS/MS. Food Chem 241:275–280. https://doi.org/10.1016/j.foodchem.2017.08.09884

    Article  CAS  PubMed  Google Scholar 

  84. Yadav S, Rai S, Srivastava A, Panchal S, Patel D, Sharma V, Jain S, Srivastava L (2017) Determination of pesticide and phthalate residues in tea by QuEChERS method and their fate in processing. Environ Sci Pollut R 24:3074–3083. https://doi.org/10.1007/s11356-016-7673-2

    Article  CAS  Google Scholar 

  85. Ly T, Ho T, Behra P, Nhu-Trang T (2020) Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem 326:126928. https://doi.org/10.1016/j.foodchem.2020.12692886

    Article  CAS  PubMed  Google Scholar 

  86. Tran SC, Le HT, Thai-Nguyen TH (2015) Determination of pesticide multi-residues in green tea using a modified QuEChERS extraction and liquid chromatography tandem mass spectrometry technique. Acta Aliment 44(3):409–419. https://doi.org/10.1556/066.2015.44.0012

    Article  CAS  Google Scholar 

  87. Ma G, Zhang M, Zhu L, Chen H, Liu X, Lu C (2018) Facile synthesis of amine-functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea. J Chromatogr A 1531:22–31. https://doi.org/10.1016/j.chroma.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  88. Li J, Sun M, Chang Q, Hu X, Kang J, Fan C (2017) Determination of pesticide residues in teas via QuEChERS combined with dispersive liquid–liquid microextraction followed by gas chromatography–tandem mass spectrometry. Chromatographia 80(9):1447–1458. https://doi.org/10.1007/s10337-017-3362-7

    Article  CAS  Google Scholar 

  89. Durak BY, Chormey DS, Firat M, Bakirdere S (2020) Validation of ultrasonic-assisted switchable solvent liquid phase microextraction for trace determination of hormones and organochlorine pesticides by GC–MS and combination with QuEChERS. Food Chem 305:125487. https://doi.org/10.1016/j.foodchem.2019.125487

    Article  CAS  PubMed  Google Scholar 

  90. Manjare SD, Dhingra K (2019) Supercritical fluids in separation and purification: a review. Mater Sci Energy Technol 2(3):463–484. https://doi.org/10.1016/j.mset.2019.04.005

    Article  Google Scholar 

  91. Arakawa M, Sano H, Baba Y, Ushitani M, Kato I (2012) Multiresidue analysis of pesticides in tea by supercritical fluid extraction (SFE) and GC-MS. J Food Hyg Soc Jpn 53(3):139–145. https://doi.org/10.3358/shokueishi.53.139

    Article  CAS  Google Scholar 

  92. Cladière M, Delaporte G, Le Roux E, Camel V (2018) Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. Food Chem 242:113–121. https://doi.org/10.1016/j.foodchem.2017.08.108

    Article  CAS  PubMed  Google Scholar 

  93. Martínez-Domínguez G, Romero-González R, Garrido Frenich A (2016) Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem 197:907–915. https://doi.org/10.1016/j.foodchem.2015.11.070

    Article  CAS  PubMed  Google Scholar 

  94. Wu C (2017) Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry. Food Chem 229:580–587. https://doi.org/10.1016/j.foodchem.2017.02.081

    Article  CAS  PubMed  Google Scholar 

  95. Jia W, Chu X, Zhang F (2015) Multiresidue pesticide analysis in nutraceuticals from green tea extracts by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1395:160–166. https://doi.org/10.1016/j.chroma.2015.03.071

    Article  CAS  PubMed  Google Scholar 

  96. Schurek J, Portolés T, Hajslova J, Riddellova K, Hernández F (2008) Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal Chim Acta 611(2):163–172. https://doi.org/10.1016/j.aca.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  97. Du Z, Liu M, Li G (2013) Novel magnetic SPE method based on carbon nanotubes filled with cobalt ferrite for the analysis of organochlorine pesticides in honey and tea. J Sep Sci 36(20):3387–3394. https://doi.org/10.1002/jssc.201300710

    Article  CAS  PubMed  Google Scholar 

  98. Lee K, Lee S (2012) Monitoring and risk assessment of pesticide residues in yuza fruits (Citrus junos Sieb ex Tanaka) and yuza tea samples produced in Korea. Food Chem 135(4):2930–2933. https://doi.org/10.1016/j.foodchem.2012.06.111

    Article  CAS  PubMed  Google Scholar 

  99. Chen S, Lin T, Li N, Xiong H, Hong Z, Zheng Y, Liu Y, Liang X (2020) Detection of 80 pesticide residues in cabbage by QuEChERS combined with gas chromatography triple quadrupole mass spectrometry. J Food Saf Qual 11(16):5428–5439

    Google Scholar 

  100. Saito-Shida S, Nagata M, Nemoto S, Akiyama H (2020) Quantitative analysis of pesticide residues in tea by gas chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization. J Chromatogr B 1143:122057. https://doi.org/10.1016/j.jchromb.2020.122057

    Article  CAS  Google Scholar 

  101. Huo F, Tang H, Wu X, Chen D, Zhao T, Liu P, Li L (2016) Utilizing a novel sorbent in the solid phase extraction for simultaneous determination of 15 pesticide residues in green tea by GC/MS. J Chromatogr B 1023–1024:44–54. https://doi.org/10.1016/j.jchromb.2016.04.053

    Article  CAS  Google Scholar 

  102. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2006) Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. J Chromatogr A 1103:94–101. https://doi.org/10.1016/j.chroma.2005.10.077

    Article  CAS  PubMed  Google Scholar 

  103. Wang L, Wang B, Zhou W, Liu Q, Yang S, Zhang Y (2015) Determination of bifenthrin in tea by ultra performance convergence chromatography and gas chromatography-mass spectrometry. Chin J Anal Chem 43(7):1047–1052. https://doi.org/10.11895/j.issn.0253-3820.150096

    Article  CAS  Google Scholar 

  104. Yang X, Lin X, Mi Y, Gao H, Li J, Zhang S, Zhou W, Lu R (2018) Ionic liquid-type surfactant modified attapulgite as a novel and efficient dispersive solid phase material for fast determination of pyrethroids in tea drinks. J Chromatogr B 1089:70–77. https://doi.org/10.1016/j.jchromb.2018.04.043

    Article  CAS  Google Scholar 

  105. Yu Y, Luo X, Wang X, Sun Z, Song C, You J (2018) A novel high-performance liquid chromatography-fluorescence analysis coupled with in situ degradation-derivatization technique for quantitation of organophosphorus thioester pesticide residues in tea. Anal Bioanal Chem 410(26):6911–6922. https://doi.org/10.1007/s00216-018-1294-1

    Article  CAS  PubMed  Google Scholar 

  106. Dai J, Chen H, Gao G, Zhu L, Chai Y, Liu X (2019) Simultaneous determination of cartap and its metabolite in tea using hydrophilic interaction chromatography tandem mass spectrometry and the combination of dispersive solid phase extraction and solid phase extraction. J Chromatogr A 1600:148–157. https://doi.org/10.1016/j.chroma.2019.04.034

    Article  CAS  PubMed  Google Scholar 

  107. Zhao Y, Zhang X, Luo F, Zhou L, Chen Z, Cui X (2016) Residue determination of cis-epoxiconazole enantiomers in fruit and tea by ultra performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Chin J Anal Chem 44(8):1200–1208. https://doi.org/10.11895/j.issn.0253-3820.160047

    Article  CAS  Google Scholar 

  108. De Silva OR, De Menezes MGG, De Castro RC, De Nobre AC, Milhome MAL, Do Nascimento RF (2019) Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chem 297:124934. https://doi.org/10.1016/j.foodchem.2019.06.001

    Article  CAS  Google Scholar 

  109. Wang F, Li S, Feng H, Yang Y, Xiao B, Chen D (2019) An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem 275:530–538. https://doi.org/10.1016/j.foodchem.2018.09.142

    Article  CAS  PubMed  Google Scholar 

  110. Saito-Shida S, Hamasaka T, Nemoto S, Akiyama H (2018) Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry: comparison between Orbitrap and time-of-flight mass analyzers. Food Chem 256:140–148. https://doi.org/10.1016/j.foodchem.2018.02.123

    Article  CAS  PubMed  Google Scholar 

  111. Li Y, Church JS (2014) Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal 22(1):29–48. https://doi.org/10.1016/j.jfda.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  112. Hassan MM, Chen Q, Kutsanedzie FYH, Li H, Zareef M, Xu Y, Yang M, Agyekum AA (2019) rGO-NS SERS-based coupled chemometric prediction of acetamiprid residue in green tea. J Food Drug Anal 27(1):145–153. https://doi.org/10.1016/j.jfda.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  113. Gushiken NK, Paganoto GT, Temperini MLA, Teixeira FS, Salvadori MC (2020) Substrate for surface-enhanced raman spectroscopy formed by gold nanoparticles buried in poly(methyl methacrylate). ACS Omega 5(18):10366–10373. https://doi.org/10.1021/acsomega.0c00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zheng X, Jahn IJ, Weber K, Cialla-May D, Popp J (2018) Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim Acta A 197:56–77. https://doi.org/10.1016/j.saa.2018.01.063

    Article  CAS  Google Scholar 

  115. Zong C, Xu M, Xu L, Wei T, Ma X, Zheng X, Hu R, Ren B (2018) Surface-enhanced raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118(10):4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  PubMed  Google Scholar 

  116. Chen X, Lin H, Xu T, Lai K, Han X, Lin M (2020) Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem 315:126276. https://doi.org/10.1016/j.foodchem.2020.126276

    Article  CAS  PubMed  Google Scholar 

  117. Chen Q, Hassan M, Xu J, Zareef M, Li H, Xu Y, Wang P, Agyekum AA, Kutsanedzie FYH, Viswadevarayalu A (2019) Fast sensing of imidacloprid residue in tea using surface-enhanced Raman scattering by comparative multivariate calibration. Spectrochim Acta A 211:86–93. https://doi.org/10.1016/j.saa.2018.11.041

    Article  CAS  Google Scholar 

  118. Zhu J, Agyekum AA, Kutsanedzie FYH, Li H, Chen Q, Ouyang Q, Jiang H (2018) Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT 97:760–769. https://doi.org/10.1016/j.lwt.2018.07.055

    Article  CAS  Google Scholar 

  119. Li H, Hu W, Hassan MM, Zhang Z, Chen Q (2019) A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles. J Food Meas Charact 13(1):259–268. https://doi.org/10.1007/s11694-018-9940-z

    Article  Google Scholar 

  120. Hassan MM, Zareef M, Jiao T, Liu S, Xu Y, Viswadevarayalu A, Li H, Chen Q (2021) Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem 338:127796. https://doi.org/10.1016/j.foodchem.2020.127796

    Article  CAS  PubMed  Google Scholar 

  121. Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63. https://doi.org/10.1016/j.actbio.2019.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129(8):672. https://doi.org/10.1039/B404498N

    Article  CAS  PubMed  Google Scholar 

  123. Nsibande SA, Forbes PBC (2016) Fluorescence detection of pesticides using quantum dot materials—a review. Anal Chim Acta 945:9–22. https://doi.org/10.1016/j.aca.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  124. Chen H, Hu O, Fan Y, Xu L, Zhang L, Lan W, Hu Y, Xie X, Ma L, She Y, Fu H (2020) Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chem 327:127075. https://doi.org/10.1016/j.foodchem.2020.127075

    Article  CAS  PubMed  Google Scholar 

  125. Tang T, Deng J, Zhang M, Shi G, Zhou T (2016) Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 146:55–61. https://doi.org/10.1016/j.talanta.2015.08.023

    Article  CAS  PubMed  Google Scholar 

  126. Wang S, Liu Y, Jiao S, Zhao Y, Guo Y, Wang M, Zhu G (2017) Quantum-dot-based lateral flow immunoassay for detection of neonicotinoid residues in tea leaves. J Agri Food Chem 65(46):10107–10114. https://doi.org/10.1021/acs.jafc.7b03981

    Article  CAS  Google Scholar 

  127. Fan Y, Liu L, Sun D, Lan H, Fu H, Yang T, She Y, Ni C (2016) “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides. Anal Chim Acta 916:84–91. https://doi.org/10.1016/j.aca.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  128. Marrazza G (2017) Aptamer sensors. Biosensors 7(4):5. https://doi.org/10.3390/bios7010005

    Article  PubMed Central  Google Scholar 

  129. Yi J, Liu Z, Liu J, Liu H, Xia F, Tian D, Zhou C (2020) A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection. Biosens Bioelectron 148:111827. https://doi.org/10.1016/j.bios.2019.111827

    Article  CAS  PubMed  Google Scholar 

  130. Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, He N (2019) Aptasensors for pesticide detection. Biosens Bioelectron 130:174–184. https://doi.org/10.1016/j.bios.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  131. Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens Bioelectron 80:398–404. https://doi.org/10.1016/j.bios.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  132. Qiao X, Xia F, Tian D, Chen P, Liu J, Gu J, Zhou C (2019) Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta 1050:51–59. https://doi.org/10.1016/j.aca.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  133. Chen P, Qiao X, Liu J, Xia F, Tian D, Zhou C (2019) Dual-signaling amplification electrochemical aptasensor based on hollow polymeric nanospheres for acetamiprid detection. ACS Appl Mater Inter 11(16):14560–14566. https://doi.org/10.1021/acsami.9b00308

    Article  CAS  Google Scholar 

  134. Zhang J, Zhao Z (2017) A method for determination of thiamethoxam in tea infusion by wavelet transform of self-enhanced absorption spectrum. Food Anal Method 10(3):659–665. https://doi.org/10.1007/s12161-016-0634-z

    Article  Google Scholar 

  135. Tang X, Xiao W, Shang T, Zhang S, Han X, Wang Y, Sun H (2020) An electronic nose technology to quantify pyrethroid pesticide contamination in tea. Chemosensors 8(2):30. https://doi.org/10.3390/chemosensors8020030

    Article  CAS  Google Scholar 

  136. Llorent Martínez EJ, Soler Gallardo MI, Ruiz Medina A (2019) Determination of thiacloprid, thiamethoxam and imidacloprid in tea samples by quenching terbium luminescence. Luminescence 34(5):460–464. https://doi.org/10.1002/bio.3592

    Article  CAS  PubMed  Google Scholar 

  137. Delaporte G, Cladière M, Jouan-Rimbaud Bouveresse D, Camel V (2019) Untargeted food contaminant detection using UHPLC-HRMS combined with multivariate analysis: feasibility study on tea. Food Chem 277:54–62. https://doi.org/10.1016/j.foodchem.2018.10.089

    Article  CAS  PubMed  Google Scholar 

  138. Kunzelmann M, Winter M, Åberg M, Hellenäs K, Rosén J (2018) Non-targeted analysis of unexpected food contaminants using LC-HRMS. Anal Bioanal Chem 410(22):5593–5602. https://doi.org/10.1007/s00216-018-1028-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu B, Xu X, Luo J, Jin S, Chen W, Liu Z, Tian C (2019) Simultaneous determination of 131 pesticides in tea by on-line GPC-GC–MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem 276:202–208. https://doi.org/10.1016/j.foodchem.2018.09.152

    Article  CAS  PubMed  Google Scholar 

  140. Del Mar Gómez-Ramos M, Rajski Ł, Heinzen H, Fernández-Alba AR (2015) Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal Bioanal Chem 407(21):6317–6326. https://doi.org/10.1007/s00216-015-8709-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This review does not include any studies with human subjects or animal experiments.

Consent for publication

Informed consent was obtained from each participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Yang, W., Li, Y. et al. Multi-residue analytical methods for pesticides in teas: a review. Eur Food Res Technol 247, 1839–1858 (2021). https://doi.org/10.1007/s00217-021-03765-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03765-3

Keywords

Navigation